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Abstract Recently, Bohr’s complementarity principle was assessed in setups
involving delayed choices. These works argued in favor of a reformulation
of the aforementioned principle so as to account for situations in which a
quantum system would simultaneously behave as wave and particle. Here we
defend a framework that, supported by well-known experimental results and
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tarity in terms of correlations between the system and an informer. Our pro-
posal offers formal definition and operational interpretation for the dual be-
havior in terms of both nonlocal resources and the couple work-information.
Most importantly, our results provide a generalized information-based trade-
off for the wave-particle duality and a causal interpretation for delayed-choice
experiments.
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1 Introduction

Although Bohr’s complementarity [1] is widely accepted as a fundamental
feature of quantum mechanics, there have been some issues about its pre-
cise formulation. While some debate has taken place concerning an even-
tual dissociation between the complementarity principle and uncertainty re-
lations [2,3,4], it seems to be widely accepted by now that there exists an un-
avoidable connection of complementarity with noncommuting observables [5,
6] and nonlocality [7,8]. Recently, complementarity was revisited, receiving
both theoretical [9,10] and experimental [11,12,13] assessments within an
interesting framework. Defining the notions of wave and particle in terms of
the statistics of clicks in detector settings and using quantum beam splitters,
these works investigated a quantum version of Wheeler’s delayed-choice ex-
periment (DCE) [14,15] and concluded that the complementarity principle
has to be updated so as to account for a “morphing behavior”.

The argument put forward by Refs. [9,10,11,12,13,14,15,16,17] can be
formulated as follows. A generic quantum system, hereafter called quanton1,
impinges on a Mach-Zehnder interferometer (MZI) [Fig. 1(a)] along the path
|0〉. After being split by the beam splitter BS1 into a superposition of distin-
guishable paths and receiving a relative phase, the quanton ends up in the
state

|p〉 = 1√
2

(

|0〉+ i eiϕ|1〉
)

. (1)

When the second beam splitter, BS2, is absent, the detectors randomly click
with probability 1

2
. Since the traveled arm is assumed to be revealed upon a

click, |p〉 is associated with particlelike behavior. On the other hand, being
present, BS2 recombines the amplitudes and makes the state evolve into

|w〉 = cos
(ϕ

2

)

|1〉 − sin
(ϕ

2

)

|0〉, (2)

up to a global phase. Because the statistics is now sensitive to the phase ϕ,
implying the occurrence of interference, the quanton is presumed to travel
along both arms simultaneously, just like a wave. Then, the state |w〉 is
associated with wavelike behavior.

By delaying the choice of inserting BS2, Wheeler’s proposal aims to defy
the assumption according to which some hidden variable would let the quan-
ton know about the state of BS2. Having been “informed” about the absence
of BS2, the quanton would choose one path, so that it could no longer pro-
duce interference even if BS2 were suddenly inserted. Recently, however, such
a DCE was realized and interference was observed [17], in accordance with
the statistics associated with |w〉. Wheeler would have interpreted this result
as follows [14]: “Does this result mean that present choice influences past dy-
namics, in contravention of every formulation of causality? Or does it mean,
calculate pedantically and don’t ask questions? Neither; the lesson presents

1 According to J.-M. Lévy-Leblond [18], the term quanton has been coined by
M. Bunge. The utility of this term is in allowing one to refer to a generic quantum
system without using words like “particle” or “wave”.
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itself rather like this, that the past has no existence except as it is recorded
in the present.”

Fig. 1 (Color online) (a) Mach-Zehnder interferometer composed of two mirrors
(M), two beam splitters (BS1,2), a tunable phase shifter, and two detectors. The
quantum setup is implemented by letting BS2 be in superposition. (b)“Wave detec-
tor.” A quanton is sent towards paths 0 and 1, interacts with two trapped qubits,
is redirected by mirrors towards a beam splitter, and finally makes a detector click.
When the input state is wavelike, the qubits get entangled after the click occurs.

In the quantum version of the DCE [9,10,11,12,13,16], BS2 is prepared
in the state cosα |out〉 + sinα |in〉, which is a superposition of being in and
out the interferometer [Fig. 1(a)]. The global state right before the clicks is

|ψ〉 = cosα |p〉|out〉+ sinα |w〉|in〉. (3)

From this state, it is concluded that the complementarity principle must be
redefined, since a single setup has been exhibited in which the quanton ex-
hibits a flagrant “morphing behavior”2. The interpretation underlying this
result differs from Wheeler’s in essence:“Behavior is in the eye of the ob-
server”, for “particle and wave are not realistic properties but merely reflect
how we look at the photon” [9]. Also, it is in dissonance with a recent analysis
claiming that “each detected photon behaves either as a particle or as a wave,
never both, and Bohr’s complementarity is fully respected” [19].

By basing the diagnostic “wave or particle” on the resulting statistics, the
conceptual framework developed by the aforementioned works matches, by
construction, Bohr’s conception of a “whole unit”, as the quanton behavior
gets defined not until the entire setup is arranged. However, the approach
faces severe conceptual difficulties, which can be enumerated as follows.

First, those works suggest that the states |p〉 and |w〉 are to be associated
with the notions of particle and wave, respectively. Indeed, it is under this
premise that it is concluded that the entangled state (3) reveals a morphing

2 In the Ref. [9], this term is introduced to name an intermediary behavior, which
cannot be exclusively identified either with a wavelike behavior or a particlelike
behavior. The notion of a “morphing behavior” is induced by a given probability
distribution, which is shown to continuously interpolate between a pattern that is
fully sensitive to the phase ϕ and a pattern that is fully insensitive to this phase.
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behavior. Now, Schrödinger’s equation predicts that, in the region between
the two beam splitters, the quanton state is always |p〉, regardless of the
state of BS2. If the quanton route were to be inferred solely from the claimed-
particlelike state |p〉, then one should arrive at the conflicting conclusion that
the quanton moves along one path, like a particle, even when BS2 is present.
Since we are not willing to deny the validity of Schrödinger’s equation, nor
wish to supplement the theory with other explanatory elements (e.g., hid-
den variables), we have to abandon the premise that |p〉 is to be associated
with particlelike behavior. But this immediately invalidates the conclusion
of Refs. [9,10,11,12,13,16] on the meaning of the state (3).

Second, if ϕ is fixed, then it is not possible to verify the phase sensitiv-
ity of the statistics, while the query about the route taken by the quanton
keeps legitimate. In particular, if ϕ = π

2
, then |p〉 = |w〉 and the statis-

tics cannot distinguish between these two states. Hence, in this case, these
states lose their claimed-different meanings. Furthermore, statistics in the
“interferometer basis” {|0〉, |1〉} are not able to distinguish a superposition
√

(1− x)|0〉 + eiϕ
√
x|1〉, which can encode a phase, from a decohered state

(1 − x)|0〉〈0| + x|1〉〈1|, which cannot encode any phase. Therefore, such a
measurement statistics is not sufficient3 to provide a reliable inference of the
quanton route.

Third, as admitted in Ref. [9], the approach is not able to address the
“tension between the observed interference and the detection of individual
photons, one by one, by clicks in the detectors.” Also, since the detector
array is part of the “whole unit” that determines the quanton behavior, one
would need another detector array (external to this “whole unit”) to explain
the mutually exclusive clicks in the first array. But then we would need a
third array to explain why we never see simultaneous clicks in the second,
and so on. This logical structure is clearly unsatisfactory.

There is yet a further difficulty. According to such a statistics-based inter-
pretation, the quanton can behave as a particle even when it is not correlated
with any other quantum degree of freedom. In this sense, this approach con-
trasts with some well-known theoretical developments [20,21,22] which, sup-
ported by distinctive experiments [23,24,25], point out that the particlelike
character emerges in the presence of a which-way detector. In fact, according

3 Another example of this limitation is as follows. Consider a double-slit experi-
ment in which P1 is a plate with only one slit, P2 is a plate with two slits, and S a
screen where the position of the quanton is recorded. After sending many quantons,
one at a time, we register an interference pattern in S. From this statistics, we then
infer that, after passing through P1, the quanton went towards the two slits in P2

(it took two paths, as a wave). This is just the standard double-slit experiment.
Now, let us put the screen S very close to P2. After sending many quantons, we no
longer see any interference pattern because the wave packets did not have time to
overlap with each other. Then, following the interpretation of Refs. [9,10,11,12,13,
16], one might conclude that, after passing through P1, the quanton went towards
only one of the slits in P2 (it took one path, as a particle). But how can it be
that the screen, posteriorly located in the space-time structure, has an influence
on the quanton when it is passing through P1? Instead of being an example of
retrocausality, this shows that the statistics does not provide a credible inference
of the quanton path.
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to the environment-induced decoherence paradigm, it is the entanglement
with inaccessible degrees of freedom that prevents interference to occur.

Here, we aim at building a conceptual framework, based on standard
concepts of the quantum information field, to address all these issues in a
self-consistent way. First, we define the notions of wave and particle in terms
of the amount of nonlocality the quanton can activate in a certain setup
(Sec. 2). Second, in accordance with this definition, we construct a quantifier
that allows one to diagnose the quanton behavior by looking only at its quan-
tum state (Sec. 3). Our measure is shown to have a direct connection with
measurement-induced disturbances and the couple information-work. Third,
we derive a complementarity relation that establishes a trade-off between the
wavelike and particlelike characters, while revealing the role played by the
dimension of the quanton Hilbert space (Sec. 4). Our formula, which consti-
tutes a generalization of well-known path-interference duality relations [19,
20,26], highlights the role of entanglement in allowing for the emergence of
particlelike behavior and shows that morphing behavior already appears in
the classical MZI (Sec. 5). Finally, having offered an entirely forward-causal4

model for duality in terms of standard elements of quantum mechanics, we
then conclude that there is no deep concept behind the dual behavior other
than noncommutativity and quantum correlations (Secs. 5 and 6).

2 Operational Definitions

In classical physics, a particle is usually described by a vector r(t), which
determines its (definite) position in relation to some origin. A wave, on the
other hand, is viewed as a delocalized disturbance, i.e., something existing
simultaneously in many locations. Mathematically, a wave is described by a
vector function with space-time dependence, Φ(r, t). In the precedent sec-
tion, these classical notions were employed to discriminate the following two
situations: i) when the interferometer was open (i.e., BS2 was absent), no
interference was observed, so that the photon should have traveled along only
one arm (particlelike behavior); ii) when the interferometer was closed (BS2

present), interference was observed, so that the photon should have traveled
along both arms simultaneously (wavelike behavior). However, as mentioned
above, this framework presented some inconsistencies and causal issues. In
this section, we look for distinct operational definitions that preserve, to some
extent, the classical notions of wave and particle, while preserving causality.
In particular, we explore the connection between delocalization and Bell non-
locality.

Let us consider the “wave detector” depicted in Fig. 1(b). A quanton
traveling along generic paths |0〉 and |1〉 is allowed to interact with two
trapped qubits, which were prepared in their ground states, |0〉

0
and |0〉

1
.

The remote qubits do not interact with each other, but each of them can

4 In this work, the notion of causality (or forward causality) is to be associated
with a time ordering according to which a present state is determined only by past
physical instances. In our model, the state of BS2 does not affect the quanton state
in an early stage of the experiment, so that any kind of retrocausality is rejected.
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interact nondestructively with the quanton, i.e., |0〉|0〉
0
|0〉

1
→ |0〉|1〉

0
|0〉

1
and

|1〉|0〉
0
|0〉

1
→ |1〉|0〉

0
|1〉

1
. This interaction is manifestly local, i.e., it only oc-

curs when the quanton crosses the traps. When the quanton enters the wave
detector in a superposition of paths, say α|0〉 + β|1〉, then after the inter-
action occurs the system state becomes α|0〉|1〉

0
|0〉

1
+ β|1〉|0〉

0
|1〉

1
. In this

case, tripartite entanglement appears in the system. Note that this will not
happen if the quanton is in an incoherent superposition (a mixture) such as
a|0〉〈0|+(1− a)|1〉〈1| (a ∈ [0, 1]). After passing through the traps, the quan-
ton is redirected by two mirrors towards a beam splitter and finally causes a
click in one of the detectors. When the quanton enters in superposition, after
a click is heard the two-qubit state reduces to α|1〉

0
|0〉

1
± iβ|0〉

0
|1〉

1
, which

is a bipartite entangled state. Interestingly, nonlocal correlations have been
activated in the two-qubit state only via local interactions.

From the above, one may conclude that nonlocality has been brought
about by the quanton state, i.e., the “gene” of the nonlocality was somehow
in the incoming state, which was a coherent superposition of paths. This
activating mechanism is not present in statistical mixtures because they are
not able to leave the qubits entangled. Now, we come to the crux. Two remote
qubits can be left nonlocally correlated, via local interactions, only if they are
“touched” simultaneously by a delocalized quanton. Here, the analogy with
a classical wave seems to be inescapable. Hence, we propose to associate the
notion of wave (particle) with coherent (incoherent) superpositions of paths.

We now move to a more general situation. Suppose that a quanton enters
the wave detector in the state

̺Q = (1− x)1
2
+ x|ψ〉〈ψ|, (4)

with x ∈ [0, 1], |ψ〉 = α|0〉+β|1〉, and |α|2+ |β|2 = 1. Assume that the initial
state of the system, ̺Q⊗|0〉〈0|

0
⊗|0〉〈0|

1
, evolves to ˜̺ when the quanton leaves

the beam splitter. After a click occurs in the detector k (k = 0, 1), the state of
the two-qubit system conditioned to the click, ̺qubits|k = TrQ(Πk ˜̺)/Tr(Πk ˜̺),
reduces to

̺qubits|k=
(

1−x
2

+ x|α|2
)

|10〉〈10|+
(

1−x
2

+ x|β|2
)

|01〉〈01|
+ (−1)k

(

i xα∗ β|01〉〈10| − i xα β∗|10〉〈01|
)

. (5)

Now, let Nl := max{0, 1
4
B2

max − 1} be the maximum degree of violation of a
CHSH Bell-inequality achieved via an optimal set of measurements (Bmax is
defined in Refs. [27,28]). For the above state, one shows that Nl = 4x2|αβ|2,
which measures the nonlocality activated in the two-qubit system by the
quanton. The entanglement produced in the wave detector, E = 2x|αβ|, can
be computed via concurrence [29].

With these results, we set out our physically-motivated definitions. If
x = 1 and |α| = |β| = 1/

√
2, then nonlocality is maximum and the quanton

state will be called strictly wavelike. On the other hand, when no coherence
is available, i.e., when either x or α or β vanishes, nonlocality is minimum,
in which case the quanton state will be referred to as strictly particlelike.
Clearly, however, intermediate regimes can exist. In the next section, we
provide quantitative statements for these notions.
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3 Waviness Measure

We are ready to formalize the notions of particle and wave. To this end, we
will employ some well-known tools of the quantum information field. In doing
so, we also want to extend the intuition constructed in the previous section.
Instead of focusing on the notion of spatial (de)localization, which was asso-
ciated with the two ports |0〉 and |1〉 of the wave detector, we will adopt the
more general concept of (in)definite path. Let {|k〉} be the eigenbasis of an
observable K spanning a Hilbert space HQ with dimension dQ. For projec-
tors Πk = |k〉〈k|, there holds that ΠkΠk′ = Πkδk,k′ and

∑

kΠk = 1. When
the quanton state is |k〉, we know with certainty the outcome even before a
measurement of K is performed, so that the quanton is in a definite path.
The notion of definiteness for a mixed state is subtler. Consider that Alice
measures the observable K and then deliveries the quanton to Bob, without
telling him the outcome. Aware of the observable measured, Bob is certain
that in each run he receives a definite-path state ρk = Πk with probability
pk = Tr(ΠkρQΠk). However, without accessing the information about the
outcomes, Bob’s prediction for the ensemble is a statistical mixture of definite
paths,

∑

k pkρk. By the theorem S
(
∑

k pkρk
)

= H(pk) +
∑

k pkS(ρk) [30],
where S and H stand for the von Neumann and Shannon entropies, respec-
tively, we see that S

(
∑

k pkΠk

)

= H(pk) = −∑

k pk ln pk. That is, Bob’s
lack of knowledge is nothing but subjective ignorance associated with the
classical probability distribution pk secretly prepared by Alice.

These aspects naturally fit our classical intuition, according to which
a particle always is in a definite path, even when this path is subjectively
ignored. Now, if a quanton is in a definite path state, then its behavior cannot
be disturbed by a projective measurement on that path. This motivates us
to link the notion of particle with states that satisfy

Π [ρQ] = ρQ, (6)

where Π [ρQ] :=
∑

kΠk ρQΠk describes the unread measurements discussed
above (see Refs. [30,31] for related accounts). If a state ρQ is particlelike
with respect to K, then it follows from (6) that f(ρQ) = f(Π [ρQ]), for a
generic f . Thus we quantify the extent to which a state ρQ is wavelike upon
measurements of K by

Iw(ρQ) := Tr
[

f(ρQ)− f(Π [ρQ])
]

. (7)

This gives a generic distance between the state under analysis and a copy
subjected to measurements of K. For any differentiable convex function f one
shows, by Klein’s inequality [30,32], that 0 6 Iw(ρQ) 6 Iubw (ρQ), where the
upper bound is given by Iubw (ρQ) = Tr[(ρQ−Π [ρQ])f ′(ρQ)]. If we assume, in
addition, that f is strictly convex, then Iw(ρQ) = 0 if and only ifΠ [ρQ] = ρQ.
Thus we associate f with measures of information (I), generally given by
convex functions. We take

Trf(ρQ) = Smax − S(ρQ) =: I(ρQ), (8)

where Smax is the maximum of the entropy S in HQ. A possible specification

for the entropy in Eq. (8) is the Tsallis entropy [33], Sq(ρ) = 1−Trρq

q−1
(q >
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0 ∈ R), which is non-negative and strictly concave. It reduces to the von
Neumann entropy as q → 1 and recovers the linear entropy S2 = 1−Trρ2 as
q = 2. Then, Iw specializes to I(q)

w (ρQ) = Sq(Π [ρQ]) − Sq(ρQ). For q = 2, a
geometric measure derives which is rather convenient for computations [32]:

I(2)

w (ρQ) =
∣

∣

∣

∣ρQ −Π [ρQ]
∣

∣

∣

∣

2

, (9)

where ||ρ||2 := Tr(ρ†ρ) is the square norm in the Hilbert-Schmidt space. On
the other hand, the measure resulting for q = 1 will prove to offer conceptual
advantage (see the discussion in the Sec. 3.1). Adopting the von Neumann
entropy makes the wavelike information I(q)

w reduce to

Iw(ρQ) = S(Π [ρQ])− S(ρQ). (10)

The superscript “(1)” will be omitted when q = 1. From Eq. (8), we see that
the wavelike information is the difference between the information associated
with the quanton state and the information available when the quanton is
measured.

3.1 Thermodynamic Interpretation

Remarkably, Iw possesses a direct thermodynamic interpretation. The key
point behind this idea is the link work-information,W (ρQ) = kBTI(ρQ) [34,
35], where kB is the Boltzmann constant and I(ρQ) = ln dQ − S(ρQ), for a
Hilbert space with dimension dQ. The work-information relation gives the
amount of work W one can draw from a heat bath of temperature T by the
use of the state ρQ. Along with Eq. (8), the work-information relation allows
us to express the wavelike information as

kBT Iw(ρQ) =W (ρQ)−W (Π [ρQ]), (11)

whose interpretation is as follows. Suppose that Alice prepares a state ρQ
and deliveries the quanton to Bob, who can extract an amount W (ρQ) of
work from the heat bath. In a second scenario, the delivered quanton is
intercepted by a classical demon [34], who measures K and forwards the
quanton to Bob. Now the extractable work is only W (Π [ρQ]). The wavelike
information Iw turns out to be directly related to the difference of work
Bob can extract by using ρQ and a counterpart secretly accessed by a local
Maxwell’s demon. Being particlelike, ρQ offers no advantage in relation to its
measured counterpart.

Before closing this section, it is instructive to compute (10) for some
states. For |ψ〉 = 1√

n

∑n

k=1
|k〉 one has that Iw = lnn, which increases with

the number of branches in superposition and vanishes for a definite path. For
|w〉 and |p〉 one gets Iw(|w〉) = −x lnx − y ln y, with x = 1− y = cos2(ϕ/2),
and Iw(|p〉) = ln 2. Since Iw(|p〉) > Iw(|w〉), we may say, in clear dissonance
with the interpretation adopted in the Refs. [9,10,11,12,13], that |p〉 is never
less wavelike than |w〉. Finally, we check that our measure is consistent with
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the diagnostic provided by our wave detector [Fig. 1(b)]. Using Eq. (9), one
shows that

I(2)

w (̺Q) = 2x2|αβ|2 = 2Nl, (12)

which highlights our argument that Bell nonlocality can be activated in the
wave detector only if the input state has some wavelike character (I(2)

w > 0).
Moreover, this relation provides a quantitative connection between waviness
and Bell nonlocality.

4 Complementarity Relation

We now discuss a second defining feature of our approach, whereby we pon-
derate on how waves and particles are produced in nature. To this end, we
retrieve the idea according to which coherence is suppressed in the presence
of an informer—an extra degree of freedom which, being correlated with
the quanton, can furnish which-path information and makes the quanton be-
have as a particle. This viewpoint was theoretically identified [20,21,22] and
experimentally demonstrated [23,24,25] sometime ago. Here we advance the
more radical position which regards that mechanism as the physical principle
underlying the wave-particle duality.

To elaborate on this view we first note that, whatever the quanton state
may be, we can always conceive a purification |Ψ〉 ∈ HQ⊗HI , whereHI is the
(eventually multipartite) Hilbert space of the informer and ρQ = TrI |Ψ〉〈Ψ |.
It follows that the entanglement E of |Ψ〉 can be evaluated by E(|Ψ〉) =
S(ρQ). In search of a complementarity relation, we simply rewrite Eq. (10)
as

Iw(ρQ) + Ip(ρQ) = IHQ
, (13)

where

Ip(ρQ) := I(Π [ρQ]) + E(|Ψ〉) (14)

defines the particlelike information. In these relations, IHQ
:= ln dQ, which

gives the maximum information available in the quanton Hilbert space HQ,
and I(Π [ρQ]) = ln dQ − S(Π [ρQ]), which is the amount of information ac-
cessible via unread measurements of K.

Equations (10)-(14) give an insightful picture of complementarity. First,
we see that the particlelike character is determined by both the measurement-
accessible information and the entanglement with an informer. Second, when
the entanglement with the informer is maximum (E = ln dQ), then Iw = 0
and Ip = ln dQ, meaning that the quanton behaves as a particle regardless
the observable one chooses to measure, i.e., the path of the quanton is definite
in all bases. Third, by focusing the analysis on ρQ, we are able to describe
the quanton behavior at any instant of time, in automatic submission to the
causal evolution prescribed by Schrödinger’s equation. Any change in the
quanton behavior is, therefore, constrained to physical interactions modeled
in the Hamiltonian of the system, so that any mysterious role of the “whole
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unit” can be physically explained. Fourth, the total amount of information
to be distributed between particle- and wave-like behavior is bounded by the
dimension dQ of the quanton Hilbert space. Fifth, our approach can shed
some light on the problem of individual clicks in the detectors. We illustrate
this point using the following minimalist model of measurement.

Suppose that a quanton is prepared in a wavelike state, |Q〉 = ∑

k ck|k〉,
for which Iw(|Q〉) = H(|ck|2). Consider an apparatus (informer) prepared
in the state | ↑〉. Assume it nondestructively interacts with the quanton via
the mapping |k〉| ↑〉 7→ |k〉| ↑k〉. After the interaction occurs, the joint state
becomes

∑

k ck|k〉| ↑k〉, where {| ↑k〉} is an orthonormal basis in HI . Now,
it is immediately seen that Iw(ρQ) = Iw(ρI) = 0 in the respective bases
{|k〉} and {| ↑k〉}, since the reduced states are mixtures. This implies that,
after the entanglement is established and even before the observer looks at
the pointer, both the quanton and the pointer have definite paths. It follows
that each one of these systems alone is incapable of producing interference;
they individually behave as particles. Notice that, even though one might
not conceive the quanton and the pointer as individual systems, as they are
entangled, the former is fundamentally inaccessible (this is why we need the
latter in the first place) and has to be traced out. When an observer looks
at the pointer and gets to know a specific outcome, say ↑k, the collapse
ρI → | ↑k〉 occurs. Then, after reading the pointer, this observer concludes
that both the pointer and the quanton behave as particle, as Iw(| ↑k〉) =
Iw(|k〉) = 0. Interestingly, we see that the act of looking at the pointer does
not change the definiteness of paths, but only reveals an ignored path. In
this sense, the collapse is nothing but information updating. It is also worth
noticing that while the wavelike information of the quanton changes during
the measurement process, the pointer preserves its particlelike identity. Now,
let us consider an instance in which two detectors (pointers) are involved.
Tracing the quanton out yields a reduced state in the form pRC|R〉〈R| ⊗
|C〉〈C|+ pCR|C〉〈C|⊗ |R〉〈R| (R=ready, C=click), with pRC + pCR = 1. Such a
classically correlated mixed state admits an interpretation according to which
either one or the other detector clicks alone. This simple model5, which can
be straightforwardly extended to any system involving a quanton and a set of
detectors, shows that, due to entanglement, there can be no two simultaneous
clicks in a set of detectors6.

The discussion on the genesis of the dual behavior can now be concluded.
Consider an entangled state

∑

k ck|k〉|Ik〉, where |Ik〉 ∈ HI . Since Iw(ρQ) = 0
if and only if ρQ =

∑

k pkΠk, strictly particlelike behavior will occur only if
〈Ik′ |Ik〉 = δk′,k. In this case, the information of every quanton state |k〉 is
exclusively encoded in an informer state |Ik〉. From the viewpoint of the in-
former, therefore, the situation is such that the quanton is always in a definite
path7. Nevertheless, there is no further informer witnessing the path of the in-

5 After the completion of this work, we became aware of Ref. [36], which proposes
a solution to the measurement problem using related arguments.

6 In this model, environment-induced decoherence is not required to explain why
the pointer manifests in a particlelike manner, although it would be useful to ac-
count for the irreversibility of the measurement process.

7 This point can be easily illustrated for the superposition |φ〉 = α|xQ〉|xI〉 +
β|xQ + δ〉|xI + δ〉, where |xQ,I〉 denotes a sharp Gaussian state centered at



11

former itself, so that there is still a lack of information for the joint state. This
explains how entanglement makes the quanton path definite while the joint
state remains a superposition of paths. On the other hand, if ρQ =

∑

k pkΠk,
one can build a purification

∑

k ck|k〉| ↑k〉, with pk = |ck|2, showing that par-
ticlelike behavior can always be thought of as emerging due to entanglement
with an informer. If entanglement is absent, genuine particlelike behavior
appears only when the quanton is in an eigenstate of K. However, as seen
in our measurement model, as far as information is concerned, a collapsed
state |k〉| ↑k〉 is physically equivalent to a “non-collapsed” entangled state
∑

k ck|k〉| ↑k〉, with | ↑k〉 being a pointer state. Indeed, in both cases the
wavelike information of the quanton and the informer is zero. Once again,
entanglement proves to be crucial.

The wavelike behavior, by its turn, is favored in the following situation.
Let γQ + γI = Γ be a generic conservation law obeyed by the Hamil-
tonian. Particlelike states, such as |γQ〉|γI〉, may dynamically evolve into
α|γQ〉|γI〉 + β|γQ + δγ〉|γI − δγ〉, so as to satisfy the conservation law. In
this case, the wavelike information for the quanton, computed via Eq. (9),
reads I(2)

w (ρQ) = 2|αβ|2|〈γI − δγ|γI〉|2. It is clear that strictly wavelike be-

havior will emerge only if |α| = |β| = 1/
√
2 (equally probable paths) and

|〈γI − δγ|γI〉| ≈ 1. The latter condition is fulfilled whenever δγ is much
smaller than the width of |γI〉, a situation that occurs when the interaction
is not able to significantly disturb the informer state. This is precisely what
happens, e.g., when a quanton passes through either a 50:50 beam splitter
or a double-slit system: Momentum-conserving interaction of a quanton with
an undisturbable object makes the former behave like a wave. This scenario
prompts us to propose a primitive statement for the underlying physics of du-
ality: Genuine particlelike behavior emerges only when a quanton is entangled
with an informer.

5 Discussion

As far as DCEs are concerned, within our framework the logic of “delaying
a choice” represents no issue at all. Immediately after passing through BS1,
the quanton can never behave as particle because there is no informer in the
system. The posterior introduction of BS2, eventually in a far distant future,
cannot change the present state of the quanton, whose physics is defined
only by the interaction with BS1. The presence of BS2 will demand, on the
theoretical side, the inclusion of a potential in the Hamiltonian. This done,
one will be able to predict that, upon the interaction with BS2, the quanton
behavior will causally change. While no object is included in the system,
nothing changes.

In the quantum MZI [Fig. 1(a)], after an interaction occurs between the
quanton and BS2, the situation is as follows. Tracing BS2 out from state (3),

xQ,I . In terms of center-of-mass and relative coordinates this state reads |φ〉 =
(α|xcm〉+ β|xcm + δ〉) |xQ − xI〉, where xcm = (mQxQ + mIxI)/(mQ + mI).
Clearly, as far as the relative physics is concerned, the quanton is in a definite
path. See Refs. [37,38] for related discussions.
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one shows that I(2)
p (ρQ) =

1

2
(1 − cos4 α) cos2 ϕ and E(2) = 1

4
sin2(2α) cos2 ϕ,

where the entanglement is now measured via linear entropy. If BS2 is in
superposition (α 6= 0, π

2
), then I(2)

p (ρQ) never reaches the maximum value 1

2
,

which means that the quanton cannot behave as a particle until reaching the
detectors. Morphing behavior will generally occur after BS2, but this is also
the case in the classical MZI (α = π

2
), for which the quanton behavior, as

predicted by I(2)
w = 1

2
sin2 ϕ and I(2)

p = 1

2
cos2 ϕ, can be directly adjusted by

the phase ϕ.
It is worth noticing that the measure Iw,p is a relational quantifier, i.e.,

it depends on the observable one uses to probe it. For instance, an eigenstate
of σz , say |0〉, will be diagnosed as particlelike upon measurements of σz and
wavelike upon measurements of σx. This is so because, in general, a quantum
state does not present the same degree of coherence in all bases. Indeed, this
conclusion is consistent with the dual notion formulated in our wave detector,
as the capability of the state |0〉 to activate nonlocality crucially depends on
how we orientate the Stern-Gerlach (SG) in order to previously separate
the paths. The eigenstate |0〉 will not split in a superposition of paths after
passing a SG aligned with the z axis, so that it cannot activate nonlocality
in the wave detector. Conversely, it will split and activate nonlocality when
SG is aligned in the x direction. The fact that the wavelike information
is relational derives from the incompatibility of observables. This can be
formally expressed by the easily-provable relation8

J −Π [J ] =
∑

k

[J , Πk]Πk, (15)

which shows that an arbitrary operator J will not be disturbed upon mea-
surements of K =

∑

k kΠk if and only if it commutes with the latter. This
remark illustrates how our approach links to the issue of the complementar-
ity of noncommuting observables. More insightful formulations can be con-
structed in specific cases. Consider, for instance, the state |ψ〉 = a|0〉+b eiθ|1〉,
with a2 + b2 = 1, as written in the σz basis. From the results of Sec. 3.1,
we get I(2)

w [σz ] = 2a2b2. Here, the notation explicitly indicates the measured
observable. Considering measurements of σx,y, the wavelike information re-
sults I(2)

w [σx,y] =
1

2
− 2a2b2 cos2 θ, which is clearly sensitive to the phase θ.

From these relations, one immediately obtains
∑

s I
(2)
w [σs] = 1−2a2b2 cos(2θ)

(s = x, y, z), which is lower bounded as

I(2)

w [σx] + I(2)

w [σy ] + I(2)

w [σz] >
1

2
. (16)

Interestingly, this inequality constitutes a clear statement of the comple-
mentarity of noncommuting observables for the state |ψ〉. It shows that the
waviness of a pure state cannot be removed in all measurement bases.

In a different vein, one may wonder whether information is also relative,
i.e., if for a given reference observable, distinct observers would access dif-
ferent values for Iw,p, while predicting the same physics. This problem was

8 As pointed out by an anonymous referee, Eq. (15) can be viewed as an alter-
native expression of Lüders’s theorem [31]. We thank the referee for this remark.
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recently investigated in the context of quantum references frames [38]. Con-
sidering a double-slit experiment inside a very light lab whose movement
would constitute an informer for an external observer, and adopting a rel-
ative formulation for quantum states, the authors discussed how the same
physical fact manifests in the viewpoint of each observer. Their approach and
conclusions are in full agreement with the primitive elements adopted here
for duality.

Finally, we point out that like Englert’s approach [20], ours admits both
the fundamental role of an informer and the occurrence of morphing behavior
(here signalized when Iw > 0 and Ip > 0 simultaneously). As advantages, our
formulation relies on an equality [Eq. (13)], directly applies to Hilbert spaces
of arbitrary dimensions, and is based on an information-theoretic measure.
This result extends previously reported duality relations [19,20,26].

6 Conclusion

In summary, employing standard tools of the quantum information theory, we
propose a conceptual framework for duality that naturally explains all the re-
cent experimental results and avoids conceptual puzzles. We abdicate Bohr’s
notion of a “whole unit” in favor of a model that links waviness with the
coherence of the quanton state. This approach proved to be rather fruitful:
Besides offering an interesting connection between the wavelike behavior and
two fundamental physical concepts, namely, Bell nonlocality and thermody-
namic work, it allows us to consistently account for the problem of individual
clicks in detector settings. Importantly, it also yields an information-based
relation that generalizes some well-known duality relations. Our approach
relies only on primitive elements of the standard quantum theory, namely,
deterministic evolution (Schrödinger’s equation), physical causation (inter-
actions), correlations (the role of the informer), and partial trace (for the
diagnostic of subsystems). It follows that, in contrast to recent works claim-
ing further sophistication for the complementarity principle, our framework
corroborates the perspective according to which Bohr’s complementarity is
nothing but a consequence of noncommutativity and quantum correlations.
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