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Entanglement dynamics via semiclassical propagators in systems of two spins

A. D. Ribeiro1 and R. M. Angelo1

1Departamento de F́ısica, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil

We analyze the dynamical generation of entanglement in systems of two interacting spins initially
prepared in a product of spin coherent states. For arbitrary time-independent Hamiltonians, we de-
rive a semiclassical expression for the purity of the reduced density matrix as function of time. The
final formula, subsidiary to the linear entropy, shows that the short-time dynamics of entanglement
depends exclusively on the stability of trajectories governed by the underlying classical Hamilto-
nian. Also, this semiclassical measure is shown to reproduce the general properties of its quantum
counterpart and give the expected result in the large spin limit. The accuracy of the semiclassical
formula is further illustrated in a problem of phase exchange for two particles of spin j.
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I. INTRODUCTION

When two initially separated quantum systems are led
to interact with each other they lose their individuality.
This means that it is no longer possible to express the
state of one of the systems separately from the other,
i.e., they have got entangled. The relevance of these
quantum correlations, which was recognized already in
the early days of the Quantum Theory, nowadays dis-
penses with further highlights. Entanglement has defi-
nitely achieved a prominent place within the quantum
phenomenology [1, 2].

In a less consensual scenario, foundational questions
have been posed which try to decipher if and how en-
tanglement manifests in the classical limit. Surprisingly,
even though it is hard to conceive a classical image of
entanglement at a first sight, there exists a number of
works reporting on the persistence of entanglement in
semiclassical regime. Although these works agree on this
essential point, their approaches are clearly different in
methodology, interpretation, and even on the very notion
of semiclassical limit.

In a seminal work [3], Furuya and co-authors have nu-
merically shown that in the short-time regime entangle-
ment behaves in accordance with the underlying classical
dynamics, with accentuated differences between chaotic
and regular initial conditions. A key ingredient in this
approach is the use of coherent states, which are used
as initial states for the dynamics as well as to furnish,
through a well-defined prescription, the corresponding
classical structure. The approaches of Refs. [4, 5] follow
the same essence, though the last one focuses on systems
of two spins. References [6–10], on the other hand, pro-
pose to link entanglement with entropic measures defined
within classical-statistical theories. Still, some authors
have investigated the semiclassical limit of entanglement
(and of decoherence) by applying time-dependent pertur-
bation theory and diagonal approximations [11–13].

The present work lies in the context delineated by
Refs. [14–16]. Basically, these papers employ semiclas-
sical propagators to analyze the entanglement dynam-

ics of bipartite quantum systems. In Jacquod’s ap-
proach [14, 15], the approximation is performed using
momentum and space representations simultaneously,
while in our previous article [16] we adopt the coherent-
state representation. Although both calculations yield
the same basic results, ours has the advantage of having
been naturally structured to accommodate spin degrees
of freedom. The aim of this contribution is to carry on
this program, providing, for the first time, a semiclas-
sical expression for entanglement dynamics of two-spin
systems.
This paper is organized as follows. We start Sec. II

by reviewing the main elements of the formal structure
associated to the semiclassical spin-coherent-state prop-
agator. We then introduce the time-reversal propagator
and unify the formalism, this being the first contribu-
tion of this paper. With the basic ingredients at hand,
we present in Sec. III our main result: a semiclassical
expression for the entanglement dynamics. The formula
is analyzed in Sec. IV as follows. First, the canonical
result [16] is shown to be exactly reproduced in an ap-
propriate limit. Second, we test the accuracy of our semi-
classical result in describing the entanglement dynamics
for the problem of phase coupling between two spins j.
In Sec. V, we present our final remarks.

II. SEMICLASSICAL PROPAGATOR IN THE

SPIN-COHERENT-STATE REPRESENTATION

The development of semiclassical approximations for
the quantum propagator in the coherent-state represen-
tation has a long history. It started about 30 years
ago with Klauder’s approach [17] on the one-dimensional
canonical-coherent-state propagator, K(zη, zµ, T ) ≡
〈zη|e−iĤT/~|zµ〉. Subsequently, other works [18–20] sub-
stantially contributed to the understanding of the semi-
classical version of K(zη, zµ, T ). In particular, Ref. [20]
consists in a very detailed study of the subject and
will be, therefore, the main support to our approach.
Moreover, extensions of the semiclassical formula to
further canonical degrees of freedom can be found in
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Refs. [21, 22], while derivations for spin variables are
given in Refs. [23–27]. Also, it is worth mentioning a
result on the two-dimensional semiclassical propagator
for the case where one variable is a spin and the other is
canonical [28] and a recent derivation for SU(n)-coherent-
states [29].
Despite this vast literature on semiclassical propaga-

tors, only recently a result has been reported [16], pro-
viding a semiclassical approximation for time-reversal

propagators using the canonical states. In what follows,
we extend this result by deriving a unified formula for
the two-dimensional semiclassical propagator in the spin-
coherent-state representation, expression which is consid-
ered as the first contribution of this paper. However, be-
fore presenting it, for the sake of completeness, we briefly
review some elements of the spin-coherent-state formal-
ism.

A. Spin Coherent States

Spin coherent states were introduced by Radcliffe [30]
in direct analogy to canonical coherent states. Since then,
they have become important tools in a variety of areas
of physics (see Refs. [31–34] for examples and further
details).
The spin coherent state associated with a particle of

spin j is defined as

|s〉 ≡
exp

{

sĴ+

}

(1 + |s|2)j
| − j〉, (1)

where the label s is a complex number, Ĵ+ is the raising

spin operator and | − j〉 is the lowest eigenstate of Ĵ3
with eigenvalue −j. The notation adopted here is such
that both s and Ĵ+ are dimensionless quantities. That

is, in this paper the operator Ĵ denotes the usual angular
momentum operator divided by ~, so that its components
satisfy

[Ĵ1, Ĵ2] = iĴ3, (2)

plus cyclic commutation relations. In terms of these
states, an over-complete unity resolution can be written
as
∫

|s〉〈s| dν(s) ≡ 1s, dν(s) =
2j + 1

π

ds(R)ds(I)

(1 + |s|2)2
, (3)

where s(R) and s(I) are, respectively, the real and the
imaginary parts of s, and the integral runs from −∞ to
+∞. In addition, spin coherent states are, in general,
non-orthogonal as can be seen in the overlap

〈sη|sµ〉 =
(

1 + s∗ηsµ
)2j

(1 + |sη|2)j (1 + |sµ|2)j
. (4)

It can be shown that |s〉 saturates the uncertainty rela-

tion 〈∆Â2〉〈∆B̂2〉 ≥ 1
4 |〈[Â, B̂]〉|2 + 1

4 |〈{∆Â,∆B̂}〉|2 [35]

for angular momentum operators, which implies that spin
coherent states are minimum uncertainty states.

B. Spin Semiclassical Propagator

Let the forward (ξ = +1) and backward (ξ = −1) quan-
tum propagator in the spin-coherent-state representation
be written as

Kξ

(

s
∗
η, sµ, T

)

≡ 〈sηx, sηy|e−iξĤT/~|sµx, sµy〉.
Considering the limits j → ∞ and ~ → 0 with the prod-
uct ~j finite, we follow Refs. [16, 20, 28] to obtain the
semiclassical formula

Kξ

(

s
∗
η, sµ, T

)

=
∑

c.t.

√

Pξ e
i
~
(Sξ+Gξ)−Λ. (5)

The indices x and y in |s〉 ≡ |sx〉 ⊗ |sy〉 refer to different
subsystems. We assume, for simplicity, that the spins
have the same magnitude j, i.e., both Hilbert spaces have
dimension 2j+1. The right-hand side of Eq. (5) depends
only on complex trajectories governed by a Hamiltonian
function H̃ (see below). In terms of auxiliary variables u
and v, the Hamilton equations are

∂H̃

∂uk
=

−2ij~ v̇k

(1 + ukvk)
2 and

∂H̃

∂vk
=

2ij~ u̇k

(1 + ukvk)
2 , (6)

where k = x, y and H̃(u,v) = H̃(s, s∗) ≡ 〈s|Ĥ |s〉. This
equality implicitly defines the new variables through the
replacement of s and s

∗ by u and v, respectively. Trajec-
tories contributing to Eq. (5) must satisfy the boundary
conditions

u
′ = sµ and v

′′ = s
∗
η, for ξ = +1,

u
′′ = sµ and v

′ = s
∗
η, for ξ = −1.

(7)

In our notation, single (double) prime stands for initial
(final) time. The sum in Eq. (5) runs over all trajec-
tories governed by Eqs. (6) and submitted to boundary
conditions (7).
The complex action Sξ = Sξ(s

∗
η, sµ, T ) and the func-

tion Gξ = Gξ(s
∗
η, sµ, T ), in Eq. (5), are explicitly written

as

i
~
Sξ = ξ

∫ T

0



j
∑

k=x,y

(

ukv̇k − vku̇k
1 + ukvk

)

− i

~
H̃



 dt+ Λ̃,

i
~
Gξ = − ξ

4

∫ T

0

∑

k=x,y

[

∂u̇k
∂uk

− ∂v̇k
∂vk

]

dt.

(8)

The factors Λ (accounting for the normalization) and Λ̃,
appearing in Eqs. (5) and (8), respectively, are given by

Λ = j
∑

k=x,y

ln
[

(1 + |sηk|2)(1 + |sµk|2)
]

,

Λ̃ = j
∑

k=x,y

ln [(1 + u′kv
′
k)(1 + u′′kv

′′
k )] .

(9)
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At last, the prefactor of Eq. (5) can be written as

Pξ = det

(

i

~
S
(ξ)
sµs

∗
η

)

∏

k=x,y

(

(1 + u′′kv
′′
k )(1 + u′kv

′
k)

2j

)

,

(10)
where

S
(ξ)
sµs

∗
η
=





∂2Sξ

∂sµx∂s∗ηx

∂2Sξ

∂sµx∂s∗ηy

∂2Sξ

∂sµy∂s∗ηx

∂2Sξ

∂sµy∂s∗ηy



 . (11)

We point out that the phase of Pξ plays a role similar to
that of the Maslov phase in the coordinate propagator.
Because of the square root in Eq. (5), we must track it
over time and add, after each complete turn, a phase −π
to the propagator.
For future use, we differentiate Sξ to get

i

2j~

∂Sξ

∂sµk
=















v′k
1 + u′kv

′
k

, for ξ = +1,

v′′k
1 + u′′kv

′′
k

, for ξ = −1,
(12)

and

i

2j~

∂Sξ

∂s∗ηk
=















u′′k
1 + u′′kv

′′
k

, for ξ = +1,

v′k
1 + u′kv

′
k

, for ξ = −1.
(13)

In addition, ∂Sξ/∂T = −ξH̃(u′,v′) = −ξH̃(u′′,v′′). As
shown in Appendix A, Eqs. (12) and (13) allow one to
write second derivatives of Sξ in terms of the elements of
the stability matrix M, which is defined by
(

δu′′

δv′′

)

≡ M

(

δu′

δv′

)

=

(

Muu Muv

Mvu Mvv

)(

δu′

δv′

)

.

(14)
It follows that in terms of M the prefactor reduces to

Pξ =
∏

k=x,y

(

1 + u′′kv
′′
k

1 + u′kv
′
k

)

×







detM−1
vv
, for ξ = +1

detM−1
uu, for ξ = −1

,

(15)
which is clearly more appropriate for numerical purposes.
At this point, it is worth mentioning why trajecto-

ries contributing to Eq. (5) are complex in general. As
pointed out after Eq. (6), s and s

∗ were just replaced by
the new variables u and v, respectively. However, if one
simply considers that u = v

∗, a seemly natural assump-
tion, one cannot generally find contributing trajectories
to Eq. (5). In fact, for both values of ξ, this would im-
pose an excessive number of boundary conditions, since
the evolution time T , and the initial (u′,v′) and final
(u′′,v′′) phase space points would be completely deter-
mined. This over-constrained problem can be circum-
vented by introducing the aforementioned complex tra-
jectories, which are obtained by extending the real and
imaginary parts of s to the complex plane. This pro-
cedure is equivalent to assume that s

∗ is no longer the

complex conjugate of s. Such a maneuver, whose formal
support is given in Ref. [20], justifies why s and s

∗ are
renamed into u and v.
Finally, it is also important to note that if, in a given

instant of time τ , a trajectory has only non-null real co-
ordinates, i.e., u(τ) = [v(τ)]∗, then it will be always real.

This can be seen as follows. If Ĥ is Hermitian, then
〈s|Ĥ |s〉 = (〈s|Ĥ |s〉)∗, implying that H̃ can be written
as a power series of the real and imaginary parts of s,
with real coefficients. Rewriting Eq. (6) in terms of s(R)

and s
(I), one may verify that real points in phase-space,

namely, those for which Im{s(R)} = Im{s(I)} = 0, are
allowed to possess only real phase-space velocities. It
follows that the motion is constrained to the real phase-
space.

III. SEMICLASSICAL ENTANGLEMENT IN

PURE BIPARTITE SPIN SYSTEMS

The entanglement dynamics of a pure bipartite system
composed of subsystems x and y can be quantified by the
linear entropy of the reduced density matrix,

Slin(ρ̂x) = 1− P (ρ̂x), (16)

where ρ̂x = Tryρ̂, ρ̂ = |ψ(T )〉〈ψ(T )|, and |ψ(T )〉 is the
state of the system in a given instant of time T . The
purity of the reduced density matrix ρ̂x is given by

P (ρ̂x) ≡ Trx{ρ̂2x} = Trx

{

[Tryρ̂(T )]
2
}

, (17)

a positive quantity lying on the interval [0, 1]. For pure
bipartite systems P is symmetric, i.e., P (ρ̂x) = P (ρ̂y),
and keeps equal to unity for non-interacting systems.
In what follows, we restrict our approach to situa-

tions in which the initial state |ψ(0)〉 is a product spin-
coherent-state |s0〉 = |s0x〉⊗|s0y〉, so that Slin(ρ̂x,y(0)) =
0. By doing so, the matrix elements of the density oper-
ator in the spin-coherent-state representation,

〈sη|ρ̂(T )|sµ〉 = 〈sη|e−iĤT/~|s0〉〈s0|eiĤT/~|sµ〉,

for a generic time-independent Hamiltonian Ĥ, become
kernels in Eq. (17). In terms of the notation of the pre-
vious section, these elements can be semiclassically ap-
proached by

〈sη|ρ̂(T )|sµ〉semi ≡ K+(s
∗
η, s0, T ) K−(s

∗
0, sµ, T ). (18)

Plugging this expression into Eq. (17) and taking the
traces in the spin-coherent-state representation, we read-
ily obtain a semiclassical version of the purity,

Psc(T ) ≡
∫

K+((w
∗
x, s

∗
y), s0, T ) K−(s

∗
0, (sx, sy), T )

× K+((s
∗
x, w

∗
y), s0, T ) K−(s

∗
0, (wx, wy), T )

× dν(sy) dν(wy) dν(sx) dν(wx).
(19)
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As seen by Eq. (3), this integral spans the whole 8-
dimensional real space composed of the real and imag-
inary parts of sx, sy, wx, and wy.

Now, let us consider, for simplicity, that only one tra-
jectory contributes to each propagator. Then, the in-
tegrand depends on four complex trajectories, each one
contributing to its respective propagator and obeying dis-
tinct, though correlated, boundary conditions, namely,

u
′ = s0 and v

′′ = (w∗
x, s

∗
y), for K+((w

∗
x, s

∗
y), s0, T ),

v
′ = s

∗
0 and u

′′ = (sx, sy), for K−(s
∗
0, (sx, sy), T ),

u
′ = s0 and v

′′ = (s∗x, w
∗
y), for K+((s

∗
x, w

∗
y), s0, T ),

v
′ = s

∗
0 and u

′′ = (wx, wy), for K−(s
∗
0, (wx, wy), T ).

(20)
Although integral (19) is rather unlikely to be analyt-
ically solved for general Hamiltonians, its structure is
proper for the application of the saddle point approxima-
tion [36]. As carefully discussed in Ref. [20], it is possible
to analytically extend integral (19) to a line integral over
an 8-dimensional complex space, which is obtained by the
complex extension of the real and imaginary parts of sx,
sy, wx, and wy. This procedure is equivalent to working
with the set (sx, s

∗
x, sy, s

∗
y, wx, w

∗
x, wy, w

∗
y) of eight inde-

pendent complex variables. Obviously, such a change of
variables implies that [see Eq. (3)]

dν(s) =
2j + 1

π

ds(R)ds(I)

(1 + |s|2)2
=

2j + 1

2πi

ds ds∗

(1 + s s∗)
2 . (21)

In this new scenario, the first step of the saddle point
method can be directly performed. It consists in looking
for critical points (s̄x, s̄

∗
x, s̄y, s̄

∗
y, w̄x, w̄

∗
x, w̄y , w̄

∗
y) of the in-

tegration variables. Neglecting derivatives of the terms
Gξ and Pξ, as justified in Ref. [20], the saddle points are
obtained from

∂

∂s̄∗y

[

Ls̄y + i
~
S+((w̄

∗
x, s̄

∗
y), s0, T )

]

=

∂

∂s̄y

[

Ls̄y + i
~
S−(s

∗
0, (s̄x, s̄y), T )

]

=

∂

∂s̄∗x

[

Ls̄x + i
~
S+((s̄

∗
x, w̄

∗
y), s0, T )

]

=

∂

∂s̄x

[

Ls̄x + i
~
S−(s

∗
0, (s̄x, s̄y), T )

]

=

∂

∂w̄∗
y

[

Lw̄y
+ i

~
S+((s̄

∗
x, w̄

∗
y), s0, T )

]

=

∂

∂w̄y

[

Lw̄y
+ i

~
S−(s

∗
0, (w̄x, w̄y), T )

]

=

∂

∂w̄∗
x

[

Lw̄x
+ i

~
S+((w̄

∗
x, s̄

∗
y), s0, T )

]

=

∂

∂w̄x

[

Lw̄x
+ i

~
S−(s

∗
0, (w̄x, w̄y), T )

]

= 0,

(22)

where Lαk
= −2j ln (1 + αk α

∗
k), with αk assuming s̄x,

s̄y, w̄x or w̄y. Using Eqs. (12) and (13) one shows that
Eqs. (22) imply that the four critical trajectories con-
tributing to Eq. (19) should obey the following additional

boundary conditions:

ū′′y = s̄y and ū′′x = w̄x, for K+((w̄
∗
x, s̄

∗
y), s0, T ),

v̄′′y = s̄∗y and v̄′′x = s̄∗x, for K−(s
∗
0, (s̄x, s̄y), T ),

ū′′y = w̄y and ū′′x = s̄x, for K+((s̄
∗
x, w̄

∗
y), s0, T ),

v̄′′y = w̄∗
y and v̄′′x = w̄∗

x, for K−(s
∗
0, (w̄x, w̄y), T ).

(23)
It follows from Eqs. (20) and (23) that the final bound-

ary conditions of the four critical trajectories must be
real, namely, ū′′ = (v̄′′)∗. Since this implies that these
trajectories have to be real for every instant of time, we
conclude that the critical set is necessarily composed of
four real trajectories. Because of this constraint, the ini-
tial boundary conditions of each trajectory become com-
pletely determined and, moreover, turn out to be the
same. Therefore, there is no other option but to con-
sider that all critical trajectories actually correspond to
the same solution departing from ū

′ = s0 and v̄
′ = s

∗
0.

Clearly, this trajectory simultaneously satisfies Eqs. (20)
and (23).
Now, expanding Eq. (19) up to second order around

the four critical trajectories produces

Psc =
T

det M̄uu det M̄vv

∫

e
1
2
δzTAδzdν(z), (24)

where dν(z) ≡ dν(sy) dν(wy) dν(sx) dν(wx) and

δzT ≡
(

δwx δwy δs
∗
x δw

∗
y δsx δsy δw

∗
x δs

∗
y

)

, (25)

with δβk = βk− β̄k. Here, β assumes w or s, or still their
complex conjugates, while k assumes x or y. In addition,

T ≡
∏

k=x,y

(1 + ū′′k v̄
′′
k )

2

(1 + s0k s∗0k)
2

(26)

and the matrix A contains second derivatives of S̄± and
Lαk

. The Gaussian integral in Eq. (24) can be exactly
solved, as shown in Appendix B. Using the result (B1)
one may rewrite Eq. (24) as

Psc =
T

√

(d− d′)2 − d′′2
, (27)

where

d = det M̄uu det M̄vv + det M̄uv det M̄vu,
d′ = det Ā det B̄+ det C̄ det D̄,
d′′ = det Ā′ det B̄′ + det C̄′ det D̄′,

with the auxiliary matrices

(

Ā D̄

C̄ B̄

)

≡







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






M̄,

(

Ā
′
D̄

′

C̄
′
B̄

′

)

≡







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






M̄.

(28)
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In writing Psc in terms of these auxiliary matrices, we
have used the relations

M̄uvM̄
−1
vv =

1

det M̄vv

(

det D̄ − det D̄′

det B̄′ det B̄

)

,

M̄vuM̄
−1
uu

=
1

det M̄uu

(

det C̄ det Ā′

− det C̄′ det Ā

)

,

(29)

which can be directly verified. Equation (27) can be fur-
ther simplified by noting that the determinant of matrix
M̄ can be written as

det M̄ = d− d′ − d′′, (30)

so that

Psc =
T

√

det M̄
[

det M̄+ 2d′′
]

=

[

1 +
2d′′

T

]−1/2

.(31)

To derive the last equation we have used the result
det M̄ = T , whose demonstration is left to Appendix C.
Equation (31) is the main result of this paper. It cor-

rectly reproduces two important properties of the quan-
tum purity for pure bipartite systems. First, through
the analysis of the elements of M̄ one may readily veri-
fies that d′′ = 0 for non-interacting systems. In this case,
Eq. (31) reduces to Psc(T ) = 1 (and Slin(T ) = 0), as
expected. Second, Eq. (31) is symmetric, since it is in-
variant under the exchange of the indices x and y. This
can be shown by direct inspection of Eq. (C6) and the
elements of d′′,

det Ā′ = − (1 + ū′′xv̄
′′
x)

2

2ij~

∂2S̄−

∂ū′′x∂ū
′′
y

det M̄uu,

det B̄′ = −
(1 + ū′′y v̄

′′
y )

2

2ij~

∂2S̄+

∂v̄′′y∂v̄
′′
x

det M̄vv,

det C̄′ = +
(1 + ū′′y v̄

′′
y )

2

2ij~

∂2S̄−

∂ū′′y∂ū
′′
x

det M̄uu,

det D̄′ = +
(1 + ū′′xv̄

′′
x)

2

2ij~

∂2S̄+

∂v̄′′x∂v̄
′′
y

det M̄vv,

(32)

which are obtained from the last of Eqs. (A3) and the
first of Eqs. (A6), combined with Eq. (29).

IV. ANALYSIS

In this section, further arguments are given which help
one to access the qualities and limitations of the semi-
classical formula (31) as a quantifier of entanglement dy-
namics.
We start by noting that Eq. (31) essentially contains

correlations among elements of the stability matrix. Re-
markably, this means that the onset of entanglement is
exclusively determined by the stability of a trajectory
departing from the center of |s0〉. This trajectory, which
is selected by rigid boundary conditions imposed by the

approximation method, is the solution of a classical struc-
ture defined by equations of motion (6) and Hamiltonian

H̃ = 〈s|Ĥ |s〉. This result is in total agreement with those
reported in Refs. [14–16] for canonical degrees of freedom
and, to the best of our knowledge, is the first of this na-
ture for systems of spins.

Also noticeable is the fact that Psc does not depend on
~ or j separately, except through H̃ . A direct inspection
of equations of motion (6)—the building blocks of M̄ and
hence of Psc—reveals an explicit dependence only on the
product ~j, which keeps finite in semiclassical regime.
As a consequence, we expect our result to remain valid
even in the strict classical limit, as defined by ~ = 0,
j = ∞, and ~j finite. Moreover, one may regard this
as a formal proof that entanglement must survive in the
classical limit of closed pure systems.

A careful inspection of the semiclassical propagators
reveals that the exclusive dependence on ~j derives from
the fact that all four contributing trajectories coalesce
to a single solution. As a consequence, contributions
emerging from the exponentials, which contain, sepa-
rately, terms on ~ and j, cancel out identically as evi-
denced in Eq. (24). While this simplifies the calculation,
since that all functions turn out to be expanded around a
single trajectory, the validity of our result gets restricted.
Indeed, it seems that semiclassical approaches containing
just one contributing trajectory do not contemplate more
complex behaviors, as oscillations and revivals, or even
longer evolution times. Usually, such features are well
described in semiclassical physics only when more tra-
jectories are considered [37–39]. Then we expect that, in
general, our derivation be valid just for short values of
time, region where just one trajectory is able to repro-
duce quantum results. We point out that our program
here was just to keep the standard steps of the saddle
point method arriving at a first formula, letting improve-
ments on the formalism to a future work.

Finally, although the derivation of Eq. (5) demands the
limit j → ∞, as discussed in Refs. [25, 26, 28] this kind
of approximation also applies for systems with spin j =
1/2. Basically, it works because second order expansions,
essence of the approximations performed, are enough to
describe correctly the dynamics of spin- 12 systems. We
then expect that Eq. (31) may be also applied to this
class of problems.

A. The canonical limit

A further interesting test for our result concerns the
canonical limit. According to Refs. [32, 34], canonical
coherent states can be obtained from spin coherent states
through a contraction process, which is implemented as
follows. Introducing scaled quantities s = z/

√
2j and
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Ĵ+ =
√
2jâ†, one takes the limit j → ∞ to get

|s〉 −→ exp
{

zâ†
}

(

1 + |z|2/2
j

)j | − j〉 ≈ ezâ
†− 1

2
|z|2 |0〉 = |z〉,

|z〉 being the well-known canonical coherent state. In ad-
dition, discarding terms smaller than j−1, it immediately
follows that

j
sṡ∗ − ṡs∗

1 + ss∗
−→ 1

2
(zż∗ − żz∗),

(1 + sηs
∗
µ)

j −→ exp

{

1

2
zηz

∗
µ

}

,

∂ṡ

∂s
+
∂ṡ∗

∂s∗
−→ −2

i

~

∂2H̃

∂z∂z∗
,

(33)

and

detS
(ξ)
sµs

∗
η

∏

k=x,y

(1 + u′′kv
′′
k )(1 + u′kv

′
k)

2j
−→ detS

(ξ)
zµz

∗
η
.

(34)
With these expressions, we convert the formalism pre-
sented in the previous section to that of the canonical
case. In addition, we should be still able to recover the
semiclassical purity derived in Ref. [16], which is given
by

P (can)
sc = Ẽ−1/2 det M̄uu det M̄vv, (35)

where

Ẽ = Ẽ ′ +
[

(

det M̄uu det M̄vv − det Ā det B̄
)

×
(

det M̄uu det M̄vv − det C̄ det D̄
)

− Ẽ ′′
]2

,

Ẽ ′ = −4
(

det M̄uu det M̄vv det Ā
′ det B̄′

)2
,

Ẽ ′′ =
(

det Ā′
)2

det B̄ det D̄−
(

det Ā′ det B̄′
)2

+
(

det B̄′
)2

det Ā det C̄.

In order to prove the equivalence between Eqs. (27)
and (35), we use Eqs. (32) in the limit considered to
show that

√

−Ẽ ′

det M̄uu det M̄vv

= det Ā′ det B̄′ + det Ā′ det B̄′

= det Ā′ det B̄′ + det C̄′ det D̄′

= d′′

and

√

Ẽ − Ẽ ′

det M̄uu det M̄vv

= det M̄uu det M̄vv

−
(

det Ā det B̄+ det C̄ det D̄
)

+

(

det Ā′2 − det Ā det C̄
)

det M̄uu

×
(

det B̄′2 − det B̄ det D̄
)

det M̄vv

= d− d′,

where the last equality was obtained by using the deter-
minant of Eq. (29),

− detM̄uu det M̄vu = det Ā′2 − det Ā det C̄,
− detM̄vv det M̄uv = det B̄′2 − det B̄ det D̄.

(36)

Since T → 1 in the considered limit, simple manipu-
lations on the above expressions complete the proof of
equivalence.
Another interesting byproduct of our approach

emerges by taking the canonical limit in only one of
the subsystems. This procedure automatically adapts
our formalism—after minor modifications on Eqs. (33)
and (34)—to describe, for instance, spin-boson systems.

B. Case study: phase coupling

Let us consider two particles, x and y, both with spins
j, coupled to the time-independent classical magnetic
field B = (0, 0, B3). The free Hamiltonian may be writ-

ten as Ĥ0 = Ĥ
(x)
0 + Ĥ

(y)
0 , where Ĥ

(k)
0 = B3Ĵ

(k)
3 , for

k = x, y. Suppose that the spins interact with each other
via the coupling

Ĥ = λ~
[

Ĵ
(x)
3 ⊗ Ĵ

(y)
3

]

, (37)

where λ is the coupling parameter. The Heisenberg equa-

tion i~(dĤ
(k)
0 /dt) = [Ĥ

(k)
0 , Ĥ0+Ĥ ] = 0 implies that there

is no energy exchange between the spins. This is why
Hamiltonian (37) is said to describe a phase coupling.
Since the entanglement dynamics cannot be influenced

by local terms, hereafter we work only with the interac-
tion Hamiltonian (37) instead of the total Hamiltonian

Ĥ + Ĥ0. Also, we assume that the initial state is given
by |ψ(0)〉 = |s0x〉 ⊗ |s0y〉, with

|s0k〉 =
1

(1 + |s0k|2)j
2j
∑

nk=0

(

2j

nk

)1/2

snk

0k | − j + nk〉. (38)

SettingN = (1+|s0x|2)j(1+|s0y|2)j and applying conven-
tional techniques of the quantum formalism it is straight-
forward to show that

P (ρ̂x(T )) =
1

N4

∑

(

2j

nx

)(

2j

n′
x

)(

2j

ny

)(

2j

n′
y

)

× |s0x|2σx |s0y|2σye−iλ T δx δy ,

(39)

where δk ≡ nk − n′
k, σk ≡ nk + n′

k, and the sum is over
nx, ny, n

′
x, n

′
y, running from 0 to ∞. This result equals

P (ρ̂y(T )) since it is clearly invariant by the exchange of
the indices x and y.
In order to establish contact with the semiclassical re-

sult, we compute the short-time expression for the entan-
glement generation. By expanding the result (39) up to
second order in time we obtain

Slin(T ) ∼=
[ √

8 |s0x| |s0y| jλ T
(1 + |s0x|2)(1 + |s0y|2)

]2

. (40)
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As anticipated by the discussion of Sec. IVA, we ex-
pect this result to reproduce the canonical one under
the parametrization s0k = z0k/

√
2j followed by the limit

j → ∞. Evaluating the above expression in these terms,
we obtain that

lim
j→∞

Slin(T ) ∼= 2 |z0x|2 |z0y|2 (λT )2, (41)

which indeed yields a result equivalent in structure to
that obtained in Ref. [16] for a system of two oscillators.
To apply the semiclassical formalism to this system, we

first find the classical Hamiltonian associated to Eq. (37):

H̃(u,v) = 〈v|λ~
[

Ĵ
(x)
3 ⊗ Ĵ

(y)
3

]

|u〉

= λ~j2
(

1− uxvx
1 + uxvx

)(

1− uyvy
1 + uyvy

)

.

(42)

Equations of motion (6) result in







u̇x
u̇y
v̇x
v̇y






=







λx 0 0 0
0 λy 0 0
0 0 −λx 0
0 0 0 −λy













ux
uy
vx
vy






, (43)

where λx = iλj
(

1−uyvy
1+uyvy

)

and λy = iλj
(

1−uxvx
1+uxvx

)

. It is

clear that both uxvx and uyvy are constants of motion.
Then trajectories are readily obtained in terms of their
initial conditions,

ux(t) = u′xe
λxt, uy(t) = u′ye

λyt,
vx(t) = v′xe

−λxt, vy(t) = v′ye
−λyt.

(44)

From them, and remembering that λx = λx(u
′
y, v

′
y) and

λy = λy(u
′
x, v

′
x), the stability matrix is straightforwardly

written as M = M1M2, where

M1 = 2t









λxe
λxt 0 0 0
0 λye

λyt 0 0
0 0 λxe

−λxt 0
0 0 0 λye

−λyt









and

M2 =

















1
2λxt

−u′
xv

′
y

1−u′
y
2v′

y
2 0

−u′
xu

′
y

1−u′
y
2v′

y
2

−u′
yv

′
x

1−u′
x
2v′

x
2

1
2λyt

−u′
yu

′
x

1−u′
x
2v′

x
2 0

0
v′
xv

′
y

1−u′
y
2v′

y
2

1
2λxt

v′
xu

′
y

1−u′
y
2v′

y
2

v′
yv

′
x

1−u′
x
2v′

x
2 0

v′
yu

′
x

1−u′
x
2v′

x
2

1
2λyt

















.

Then, as for this system T amounts to 1, and

detA′ =
2v′

xv
′
yλxt

1−u′
y
2v′

y
2 , detB′ =

−2u′
xu

′
yλyt

1−u′
x
2v′

x
2 ,

detC′ =
−2v′

yv
′
xλyt

1−u′
x
2v′

x
2 , detD′ =

2u′
xu

′
yλxt

1−u′
y
2v′

y
2 ,

(45)

we finally find that

Psc(T ) = [1 + 2d′′]−1/2

=

[

1−
16u′xv

′
xu

′
yv

′
yλxλyT

2

(1− u′x
2v′x

2)(1 − u′y
2v′y

2)

]−1/2

≈ 1−
[ √

8 |s0x| |s0y| j λ T
(1 + |s0x|2)(1 + |s0y|2)

]2

,

(46)

which agrees with the quantum result (40).
This case study highlights the major difficulty of our

approach: the semiclassical formula applies accurately
only in the short-time regime. Nevertheless, this is not
really surprising. As pointed out above, it is well-known
that quantum phenomena can be well described semi-
classically only via many contributing trajectories. As
we have seen, this is not the case here. Actually, this
turns out to be one of the next challenging question in
the context drawn so far: How to improve the semiclassi-
cal formula so as to correctly describe the entanglement
dynamics for longer times?

V. FINAL REMARKS

In summary, this paper is concerned with autonomous
systems of two spins j prepared in a product of spin-
coherent-states. We looked at the entanglement dynam-
ics as quantified by the linear entropy—or its kernel, the
quantum purity—as a function of time. A semiclassical
approximation for the purity was derived by replacing
exact propagators by their semiclassical versions. The
calculation, which employed the saddle point method to
analytically solve the integrals, produced the semiclassi-
cal expression (31), the main result of this paper. This
formula allows one to express the onset of entanglement
in terms of a classical structure, defined by a Hamiltonian
function, equations of motions, and a set of boundary
conditions involving the initial conditions. The semiclas-
sical time-reversal spin-coherent-state propagator (5) is
another original derivation of this work.
The adequacy of our results was illustrated by some

important analytical tests. First, the semiclassical purity
was shown to be symmetric. This property, which is not
trivially reproduced by classical entropic measures [6, 9],
indicates that our formula does capture the quantum
essence of entanglement. Interestingly, however, the re-
sulting structure is shown not to importantly depend on
~ or j separately. This constitutes a symptom of the fact
that the semiclassical result should be accurate only in
the short-time regime. Second, it was shown that the
semiclassical purity correctly recovers the canonical re-
sult [16] in the large-spin limit. We concluded the tests
with a case study which confirmed the accuracy of our
semiclassical result in the regime of short times.
Finally, it is worth noting that our results and conclu-

sions are in consonance with many others reported for
canonical degrees of freedom [3, 4, 14, 16], especially in
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what regards the link between entanglement dynamics
and stability of underlying classical structures. A natu-
ral continuation of this paper includes the improvement
of the semiclassical formula so as to reproduce the ex-
act entanglement dynamics in regimes of longer values of
time. Work on this topic is now in progress.
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Appendix A: Elements of the stability matrix and

second derivatives of the action

In this appendix we derive relations between elements
of the stability matrix M, defined by Eq. (14), and sec-
ond derivatives of the complex action Sξ, defined by
Eq. (8). We start by performing variations on both sides
of Eqs. (12) and (13). Dealing first with ξ = +1, we get
[

Γ+ +

(

A+ 0
0 C+

)](

δu′

δv′′

)

=

(

0 B+

D+ 0

)(

δu′′

δv′

)

,

(A1)
where

Γ+ ≡
(

S
(+)
u′u′ S

(+)
u′v′′

S
(+)
v′′u′ S

(+)
v′′v′′

)

,

S
(+)
ab

≡
(

∂2S+

∂ax∂bx

∂2S+

∂ax∂by
∂2S+

∂ay∂bx

∂2S+

∂ay∂by

)

,

with a and b assuming u
′ or v′′, and

A+ ≡ −2ij~





v′
x
2

(1+u′
xv

′
x)

2 0

0
v′
y
2

(1+u′
yv

′
y)

2



 ,

B+ ≡ −2ij~

(

1
(1+u′

xv
′
x)

2 0

0 1
(1+u′

yv
′
y)

2

)

,

C+ ≡ −2ij~





u′′
x
2

(1+u′′
xv

′′
x )2 0

0
u′′
y
2

(1+u′′
y v

′′
y )2



 ,

D+ ≡ −2ij~

(

1
(1+u′′

xv
′′
x )2 0

0 1
(1+u′′

y v
′′
y )2

)

.

Rearranging Eq. (A1), so as to write the final displace-
ments δu′′ and δv′′ as a function of the initial ones δu′

and δv′, and comparing it with Eq. (14) lead to

Muu = D
−1
+

{

S
(+)
v′′u′ − C̃+

[

S
(+)
u′v′′

]−1

Ã+

}

,

Muv = D
−1
+ C̃+

[

S
(+)
u′v′′

]−1

B+,

Mvu = −
[

S
(+)
u′v′′

]−1

Ã+,

Mvv =
[

S
(+)
u′v′′

]−1

B+,

(A2)

where Ã+ ≡ S
(+)
u′u′ +A+ and C̃+ ≡ S

(+)
v′′v′′ +C+. Invert-

ing these relations, one shows that

S
(+)
u′u′ = −B+M

−1
vvMvu −A+,

S
(+)
u′v′′ = B+M

−1
vv
,

S
(+)
v′′u′ = D+

[

Muu −MuvM
−1
vv

Mvu

]

,

S
(+)
v′′v′′ = D+MuvM

−1
vv

−C+.

(A3)

Analogous relations can be found for ξ = −1. Differ-
entiating Eqs. (12) and (13), we find that

[

Γ− +

(

A− 0
0 C−

)](

δu′′

δv′

)

=

(

0 B−

D− 0

)(

δu′

δv′′

)

,

(A4)
where

Γ− ≡
(

S
(−)
u′′u′′ S

(−)
u′′v′

S
(−)
v′u′′ S

(−)
v′v′

)

,

S
(−)
ab

≡
(

∂2S−

∂ax∂bx

∂2S−

∂ax∂by
∂2S−

∂ay∂bx

∂2S−

∂ay∂by

)

,

with a and b now assuming u
′′ or v′, and

A− ≡ −2ij~





v′′
x

2

(1+u′′
xv

′′
x )2 0

0
v′′
y

2

(1+u′′
y v

′′
y )2



 ,

B− ≡ −2ij~

(

1
(1+u′′

xv
′′
x )2 0

0 1
(1+u′′

y v
′′
y )2

)

,

C− ≡ −2ij~





u′
x
2

(1+u′
xv

′
x)

2 0

0
u′
y
2

(1+u′
yv

′
y)

2



 ,

D− ≡ −2ij~

(

1
(1+u′

xv
′
x)

2 0

0 1
(1+u′

yv
′
y)

2

)

.

Manipulating Eq. (A4) in a convenient way, we get

Muu =
[

S
(−)
v′u′′

]−1

D−,

Muv = −
[

S
(−)
v′u′′

]−1

C̃−,

Mvu = B
−1
− Ã−

[

S
(−)
v′u′′

]−1

D−,

Mvv = B
−1
−

{

S
(−)
u′′v′ − Ã−

[

S
(−)
v′u′′

]−1

C̃−

}

,

(A5)

where Ã− ≡ S
(−)
u′′u′′ +A− and C̃− ≡ S

(−)
v′v′ +C−. Invert-

ing them leads to

S
(−)
u′′u′′ = B−MvuM

−1
uu −A−,

S
(−)
u′′v′ = B−

[

Mvv −MvuM
−1
uu

Muv

]

,

S
(−)
v′u′′ = D−M

−1
uu
,

S
(−)
v′v′ = −D−M

−1
uu

Muv −C−.

(A6)

Equations (A2), (A3), (A5), and (A6) establish the in-
tended connection between elements of the stability ma-
trix and second derivatives of the action. In particular,
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they prove the equivalence between Eqs. (10) and (15),

provided that we identify detS
(+)
sµs

∗
η
and detS

(−)
sµs

∗
η
with

detS
(+)
u′v′′ and detS

(−)
v′u′′ = detS

(−)
u′′v′ , respectively.

Appendix B: Gaussian integral

In this appendix we solve the Gaussian integral

I ≡
∫

e
1
2
δzT A δz dν(z),

which the semiclassical purity Psc depends on, as shown
in Eq. (24). While δz and dν(z) are defined in the main
text, the 8 × 8 matrix A is composed of the following
4× 4 blocks

A11 ≡
(

Cw̄∗ + i
~
S̄
(−)
u′′u′′ Bw̄y

Bw̄y
Cs̄ +

i
~
S̄
(+)
v′′v′′

)

,

A22 ≡
(

Cs̄∗ + i
~
S̄
(−)
u′′u′′ Bs̄y

Bs̄y Cw̄ + i
~
S̄
(+)
v′′v′′

)

,

A12 ≡
(

0 Bw̄x

Bs̄x 0

)

, and A21 ≡
(

0 Bs̄x

Bw̄x
0

)

,

where Cᾱ = −ᾱ2
xBᾱx

− ᾱ2
yBᾱy

,

Bᾱx
≡
( −2j

(1+ᾱx ᾱ∗
x)

2 0

0 0

)

and Bᾱy
≡
(

0 0

0 −2j
(1+ᾱy ᾱ∗

y)
2

)

,

with α assuming s, s∗, w, and w∗. In Appendix A, second
derivatives of the actions S± are written in terms of the
stability matrix M of the pertinent trajectory. Using
Eqs. (A3) and (A6), and recalling that the trajectory
associated to S̄+ is identical to that associated to S̄−, we
rewrite the above matrices as

A11 = A22 =

(

−SM̄vuM̄
−1
uu

SRy

SRy −SM̄uvM̄
−1
vv

)

,

A12 = A21 =

(

0 SRx

SRx 0

)

,

where

Rx =

(

1 0
0 0

)

, Ry =

(

0 0
0 1

)

, and

S =

(

−2j
(1+ū′′

x v̄
′′
x )2 0

0 −2j
(1+ū′′

y v̄
′′
y )2

)

.

With these arrangements, the determinant of A can be
straightforwardly calculated, resulting that

detA = (detS)
4 [
a21 − a22

]

,

where

a1 = 1 + det M̄vu det M̄
−1
uu

det M̄uv det M̄
−1
vv

− h
T
x M̄vu M̄

−1
uu hx h

T
x M̄uv M̄

−1
vv hx

− h
T
y M̄vu M̄

−1
uu

hy h
T
y M̄uv M̄

−1
vv

hy ,

a2 = h
T
x M̄vu M̄

−1
uu

hy h
T
y M̄uv M̄

−1
vv

hx

+ h
T
y M̄vu M̄

−1
uu

hx h
T
x M̄uv M̄

−1
vv

hy,

with h
T
x ≡ (1, 0) and h

T
y ≡ (0, 1). Using Eq. (21) and

2j+1
2j ≈ 1, which becomes exact in the limit considered,

we finally find that

I =
(2j + 1)4 (detA)−1/2

(1 + ū′′xv̄
′′
x)

4(1 + ū′′y v̄
′′
y )

4
≈
√

1

a21 − a22
. (B1)

Appendix C: Determinant of the stability matrix

Here we derive an expression for the determinant of M
[Eq. (14)], the stability matrix associated to the classical
trajectory involved in the calculation of Psc. Because of
the symplectic structure of canonical Hamilton’s Equa-
tions, the determinant of the stability matrix is constant
and equals to 1 (see, for instance, Ref. [40]). However,
for the spin equations of motion (6), the above no longer
holds. Our strategy to compute detM consists in in-
troducing a new set of canonical variables qx, px, qy and
py [41, 42], for which detMcan = 1. Then, from the
relation between the two set of variables, detM can be
determined.

Assuming that uk = uk(qk, pk) and vk = vk(qk, pk), for
k = x, y, implies that

δw = T δr, (C1)

where we have defined δwT ≡ (δux δuy δvx δvy) and
δrT ≡ (δqx δqy δpx δpy). Non-null elements of T are
given by the relations

t11 ≡ ∂ux

∂qx
= Jx

∂px

∂vx
, t13 ≡ ∂ux

∂px
= −Jx ∂qx

∂vx
,

t22 ≡ ∂uy

∂qy
= Jy

∂py

∂vy
, t24 ≡ ∂uy

∂py
= −Jy ∂qy

∂vy
,

t31 ≡ ∂vx
∂qx

= −Jx ∂px

∂ux
, t33 ≡ ∂vx

∂px
= Jx

∂qx
∂ux

,

t42 ≡ ∂vy
∂qy

= −Jy ∂py

∂uy
, t44 ≡ ∂vy

∂py
= Jy

∂qy
∂uy

,

(C2)

where Jx ≡ t11t33 − t13t31, Jy ≡ t22t44 − t24t42, and
the last term of each equation is obtained by inverting
Eq. (C1).

By demanding qk and pk to be canonical coordinates,
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one must require that

q̇k =
∂qk
∂uk

u̇k +
∂qk
∂vk

v̇k =
(1 + ukvk)

2

2ij~
{qk, H̃}uk,vk

=
(1 + ukvk)

2

2ij~
{qk, pk}uk,vk

∂H̃

∂pk
=
∂H̃

∂pk
,

ṗk =
∂pk
∂uk

u̇k +
∂pk
∂vk

v̇k =
(1 + ukvk)

2

2ij~
{pk, H̃}uk,vk

=
(1 + ukvk)

2

2ij~
{qk, pk}vk,uk

∂H̃

∂qk
= − ∂H̃

∂qk
,

(C3)
where Eq. (6) was used to eliminate the time derivative.

In these relations, H̃(qx, qy, px, py) amounts to

H̃ [ux(qx, px), uy(qy, py), vx(qx, px), vy(qy, py)].

Last equalities of Eqs. (C3) imply that

{qk, pk}uk,vk = J−1
k = 2ij~/(1 + ukvk)

2. (C4)

Since the stability matrixMcan in the new set of variables
is defined by

δr′′ = Mcanδr
′, (C5)

one can use Eq. (C1) to find that M = T
′′
Mcan (T

′)
−1

.
It follows that

detM =
detT′′

detT′
detMcan =

J ′′
xJ

′′
y

J ′
xJ

′
y

= T , (C6)

where T is given by Eq. (26).
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