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1. Introduction

It is an amazing physical phenomenon that a particle can be delocalized by a slit.
In fact, in diffraction experiments the slit prepares a particle in a state of spatial
superposition relative to the laboratory. The slit and the detectors, on the other
hand, have well-defined positions and velocities relative to the laboratory, as they are
rigidly attached to it. But are these quantum notions of localization absolute? The fact
that position is a relational physical quantity impels us to answer this question in the
negative. Indeed, if the particle was granted the right to be a frame of reference, then
the interpretation would be rather different: it is the particle itself that prepares the slit
in a delocalized state. That is, from the perspective of the particle—in this capacity,
a quantum reference frame—the slit, the detectors, and even the experimentalist, are
not spatially localized.

The notion of quantum frame of reference has shown to be crucial in yielding a
deeper understanding of important problems in quantum physics. Some examples are
representative. In 1957, starting from considerations about the physics seen by two
different observers, one of them being part of the physical system described by the
other, H. Everett stated his relative state formulation of quantum mechanics [1]. A
decade later, Aharonov and Susskind [2, 3] established a relation between quantum
frames of reference and superselection rules associated with both angular momentum
and charge. Later on, Aharonov and co-authors elaborated on the notions of vector
potentials and inertial forces in moving frames [4, 5] and presented, in Ref. [6], a
Hamiltonian formulation for the physics seen from the perspective of a quantum
particle. More recently, many works have investigated fundamental properties of
quantum reference frames [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Some of them are directly related to the quantum information science, particularly in
the context of quantum communication [16, 17, 18, 19, 20, 21, 22] and entanglement
detection [16, 23, 24].

This paper aims to contribute to the aforementioned foundational scenario by
formulating the quantum mechanics of spatial degrees of freedom as seen by a reference
particle. As in the Aharonov-Kaufherr (AK) work [6], the idea consists in abandoning
the primitive need of well-localized labs of infinite mass to support the theory. In
particular, the problem we are concerned with may be further elaborated as follows.
Usually, our quantum description of a dynamical system starts by modeling a physical
potential and an initial quantum state, both of which are defined relatively to a fixed

system of coordinates in the laboratory. Strictly speaking, therefore, this scheme holds
only for inertial laboratories [25]. From the perspective of an external observer, such
a lab would be a spatially localized physical system with infinite mass, so as not to get
any kick-back under interactions with the particles observed inside. Since there does
not exist such an idealized frame in the universe, it is rather legitimate to ask what
the physical laws are relative to realistic finite-mass objects. This formulation would
automatically lead us to the laws of noninertial quantum frames, within which fictitious
potentials should manifest. Moreover, the very basic notion of reference frame would
be suitably accommodated within the conceptual framework of the quantum theory.

Our approach is similar in spirit to Aharonov and Kaufherr’s in that we start with
the quantum description of a many-particle system from the viewpoint of an absolute

external coordinate system, to be lately abandoned. We then move to a description
relative to one of the quantum particles of the system—the quantum frame of reference.
However, our approach is still different in three important aspects. First, we employ
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canonical transformations which provide information about the relative momenta as
well. As we show, this allows for the correct physical interpretation of the relational
correlations appearing in the relative states. Second, we do consider that the reference
particle interacts with other parts of the system, situation which will naturally offer
a description from the perspective of accelerated frames of reference. Third, and
more important, we discuss several fundamental aspects associated with the relativity
of quantum states. Yet, we should stress that our contribution constitutes both a
substantial complement and a fundamental extension to studies recently reported by
one of us and collaborators [26] on the physics seen from the perspective of very light
frames of reference.

This paper is organized as follows. In Sec. 2 we present the main aspects
underlying the kinematics of quantum frames of reference in systems of distinguishable
particles and examine some fundamental elements which complement and generalize
those reported in Ref. [26]. In particular, we show that no quantum reference
frame is disprivileged in relation to absolute frames. Importantly, we identify
the conditions which reproduce the inertial description, thus finding out, from the
quantum substratum, the defining characteristics of the absolute frame of reference.
In Sec. 3 we present the Hamiltonian formulation of noninertial quantum frames of
reference and identify how the fictitious forces formally manifest. Closing remarks are
left to Sec. 4.

2. Kinematics

In this section we elaborate on the kinematics of quantum reference frames. Our
strategy consists in starting with the description of the quantum state of a many-
particle system from the viewpoint of an absolute frame of reference (external to the
physical system) and then moving to a description relative to one of the particles of
the system (an internal reference frame).

For simplicity, we initially consider a system with only two particles, say particle
0 and particle 1. Throughout this paper we always use the index 0 to name the
particle which is going to be promoted to reference frame. Physically, it is instructive
to imagine that particle 0 is a very light closed lab, with no access to the external
world, and particle 1 is the system of interest. A central ingredient of the approach is
the expression

|x0〉0|x1〉1 = |m0x0+m1x1

M 〉
CM
|x1 − x0〉r1 , (1)

which establishes the change of basis connecting two distinct coordinate systems. Here
M = m0 + m1, the total mass of the system. The ket |xk〉k, k = 0, 1, denotes the
position eigenstate of particle k relative to the external frame of reference, inertial by
hypothesis. The first ket on the r.h.s. is the eigenstate of the center-of-mass position,
which is also defined relatively to the external frame. The ket |x1 − x0〉r1 , by its turn,
encapsulates the physics we want to investigate, as it is a position eigenstate of particle
1 relative to particle 0. Relation (1) tells us how to express a generic absolute state

|ψ〉 =
∫

dx0dx1 ψ(x0, x1) |x0〉0|x1〉1 (2)

in terms of the new coordinates. Elementary manipulations yield

|ψ〉 =
∫

dxCMdxr1 ψ̃(xCM, xr1) |xCM〉CM
|xr1〉r1 , (3)
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where ψ̃(xCM, xr1) = ψ (xCM − m1

M
xr1 , xCM + m0

M
xr1). Since the center-of-mass position

is information defined relatively to the external frame of reference and, therefore,
cannot be accessed from inside the closed lab, its corresponding partition must be
traced out. Thus, the physics seen from the quantum frame must be revealed solely
by the reduced matrix ρ̂r1 = TrCM(|ψ〉〈ψ|). For convenience, we replace (xCM, xr1)
with (u+m1χ/M,χ), where u is a new dummy variable and χ the relative coordinate.
Taking δ for an arbitrary displacement, the resulting matrix elements of the relative
state read

〈χ|ρ̂r1 |χ+ δ〉 =
∫

du eu∂χ

[

ψ (u, χ)ψ∗(u− d0, χ+ d1)
]

, (4)

where d0 = m1δ/M , d1 = m0δ/M , and eu∂χf (χ) = f (χ+ u). Diagonal elements are
given by

〈χ|ρ̂r1 |χ〉 =
∫

du eu∂χ |ψ (u, χ)|2 . (5)

In particular, if ψ(x0, x1) = φ0(x0)φ1(x1) one has that

〈χ|ρ̂r1 |χ〉 =
[∫

du |φ0(u)|2 eu∂χ

]

|φ1(χ)|2 , (6)

from which one notes that the relative probability distribution is given by the
convolution of the two probability distributions seen by the external observer, meaning
that the physics seen by particle 0 is blurred by its own dispersion relative to the
external absolute frame. The shift operator eu∂χ expresses the relational correction in
the position of particle 1 relative to particle 0.

Now, note that the probability distribution 〈χ|ρ̂r1 |χ〉 seen by particle 1 is always
insensitive to the masses. No surprise so far; this is what one would expect from
a purely classical relational reasoning. Indeed, it is straightforward to show, under
a corresponding change of variables and posterior integration of xCM, that a generic
classical distribution ρ(x0, x1) produces ρr1(χ) =

∫

du eu∂χρ(u, χ), in direct reference
to Eq. (5). On the other hand, Eq. (4) reveals an important aspect of the physics
seen from quantum frames. Actually, it illustrates, for a generic state, a subtle point
behind the puzzles investigated in Ref. [26]. The nonintuitive element comes from the
dependence on the masses. Why does the ratio between the masses, which d0 and d1
depend on, influence the relative physics? The answer advanced in Ref. [26], and here
generalized by Eq. (4), points to the fact that the center of mass is typically correlated
with the relative partition. Indeed, this is expected to be the case whenever the state
is prepared in the external frame; from within the quantum frame, the center of mass
cannot be touched and hence can never get correlated with the relative (internal)
partition. In Appendix A we show how these aspects manifest in the Aharonov-
Kaufherr approach, in which the canonical transformation does not depend explicitly
on the masses.

Another important information can be extracted from the result (4). Let us
assume that m1/m0 → 0. In this limit we expect the quantum frame to be inertial
and, as such, equivalent to the external frame. We then ask whether the internal and
external predictions agree. Noting by Eq. (4) that d0 → 0 and d1 → δ we can write

〈χ|ρ̂r1 |χ+ δ〉 =
∫

du eu∂χ

[

ψ (u, χ)ψ∗(u, χ+ δ)
]

. (7)
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In relation to the external frame, it is straightforward to show, from the state (2),
that the reduced state of particle 1, ρ̂1 = Tr0 (|ψ〉〈ψ|), has matrix elements

〈χ|ρ̂1|χ+ δ〉 =
∫

du ψ (u, χ)ψ∗(u, χ+ δ) . (8)

Clearly, the relative description (7) is not equal to the external one yet: the former
is an average over all possible displacements promoted by the shift operator eu∂χ . As
shown previously, this introduces additional dispersion to the relative description. Let
us assume, in addition, that there is no entanglement. Considering that ψ(x0, x1) =
φ0(x0)φ1(x1) makes Eq. (8) reduce to 〈χ|ρ̂1|χ+ δ〉 = φ1(χ)φ

∗
1(χ+ δ), whereas

〈χ|ρ̂r1 |χ+ δ〉 =
[∫

du |φ0(u)|2 eu∂χ

]

φ1(χ)φ
∗
1(χ+ δ). (9)

The descriptions are still different. However, from the above equation we identify a
third condition, which finally ensures equivalence, namely, that the state of particle 0
should be highly localized. In fact, by taking |φ0(x0)|2 = δ(x0 − x̄0) one obtains that

〈χ|ρ̂r1 |χ+ δ〉 = ex̄0∂χ φ1(χ)φ
∗
1(χ+ δ), (10)

which is identical to the external description up to an expected shift in the coordinate
system. We have seen, therefore, that the quantum frame becomes equivalent to the
external one as long as (i) it is much heavier than the particle under investigation, (ii)
it is not entangled with this particle, and (iii) its state is sharply localized in relation
to the external frame.

This analysis suggests that these are the aspects tacitly assumed for our everyday
laboratories, within which the ordinary quantum-mechanical formulation applies.
Remarkably, it reinforces the notion of classicality often associated with these labs
and, more importantly, qualifies this classical limit departing from the quantum
substratum. Indeed, one may note by ∆x0∆p0 = m0∆x0∆ẋ0 > ~/2 that because
m0 → ∞ no increase in the speed variance is required as ∆x0 → 0. Then, low
dispersions in position and speed are simultaneously allowed without any violation of
the uncertainty principle.

Before closing this section, it is worth showing how our approach connects with the
general theory of quantum reference frames [16]. Let us consider a unitary operator,

T̂ := exp

(

− ix̂1p̂0
~

m1

M

)

exp

(

ix̂0p̂1
~

)

, (11)

which yields

T̂ |x0〉0|x1〉1 = |m0x0+m1x1

M 〉
0
|x1 − x0〉1. (12)

Although the mathematical result is identical to (1), the interpretation is slightly
different. Here we have an active transformation which changes the state of the
system while keeping the same coordinate system. The reduced density operator
ρ̂1 = Tr0(T̂ |ψ〉〈ψ|T̂ †) can be written

ρ̂1 =

∫

du dx1 dx
′
1 ψ

(

u− m1

M
x1, u+

m0

M
x1

)

× ψ∗
(

u− m1

M
x′1, u+

m0

M
x′1

)

|x1〉〈x′1|. (13)

It is straightforward to show that the matrix elements 〈χ|ρ̂1|χ+ δ〉 are equal to those
given by Eq. (4), thus proving that our approach is mathematically equivalent to an
active unitary transformation. Now, noting that

ψ
(

u− m1

M
x1, u+

m0

M
x1

)

= 〈x1| T̂u(u) 〈u|ψ〉, (14)
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with

T̂ (u) = e−
m1

M
x̂1∂ue

iup̂1
~ , (15)

we may rewrite Eq. (13) in the form

ρ̂1 =

∫

du T̂ (u) 〈u|ρ̂|u〉 T̂ †(u). (16)

This formula makes direct reference to the twirling operation [16]. The integration
over all possible values of the particle-0 position, which according to Eq. (12) plays
the role of the center-of-mass position before the active transformation, ensures the
invariance of the resulting relative state under translations of the center of mass. This
completes the proof that our approach formally enters the general theory of quantum
reference frames in the context of an active unitary transformation.

2.1. Many-particle systems

A generalization of the above ideas is given as follows. For one-dimensional systems
composed of N + 1 distinguishable particles, a generic state can be written in terms
of the eigenstates of external positions as

|ψ〉 =
∫

dx0 d
N~x ψ(x0, xj) |x0〉|xj〉, (17)

where |x0〉|xj〉 ≡ |x0〉|x1〉 . . . |xN 〉, ψ(x0, xj) = 〈x0|〈xj |ψ〉, and dN~x = dx1 . . . dxN .
Now we move to the description relative to particle 0. We consider a new set of N +1
coordinates,

xCM =
1

M

N
∑

i=0

mi xi,

xrj = xj − x0 (j = 1, . . . , N),

(18)

M =
N
∑

i=0

mi, whose inverse transformation reads

xj = xrj + xCM − 1

M

N
∑

k=1

mk xrk , (19)

for j = 1, . . . , N . Accordingly, we use the generalization of the mapping (1) to rewrite
Eq. (17) as

|ψ〉 =
∫

dxCM dN~xr ψ̃(xCM, xrj ) |xCM〉|xrj 〉, (20)

where ~xr = (xr1 , . . . , xrN ) and ψ̃(xCM, xrj ) = ψ(x0, xj) with x0 and xj given by
Eq. (19). Tracing out the center-of-mass degree of freedom we finally get

〈χj |ρ̂r|χj + δj〉 =
∫

du e~u·∇χ

[

ψ(u, χj)ψ
∗(u −∆, χj −∆+ δj)

]

, (21)

and

〈χj |ρ̂r|χj〉 =
∫

du e~u·∇χ |ψ(u, χj)|2 , (22)

where ~u · ∇χ = u
∑

j ∂χj
and ∆ =

∑N
j=1mjδj/M . It is just an exercise to prove that,

despite minor differences in the formulas, all the conclusions of the two-particle case
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directly apply here. The corresponding many-particle active transformation is given
by

T̂ = exp



− ip̂0
~

N
∑

j=1

mj x̂j
M



 exp





ix̂0
~

N
∑

j=1

p̂j



 . (23)

2.2. Relative nonlocality

Another important aspect of quantum reference frames appears specifically in
situations involving more than two particles. It refers to the structure of the
Hilbert space. We consider two distinct canonical transformations involving relative
coordinates, both illustrated bellow for N = 3:

x̂CM = 1
M

2
∑

i=0

mix̂i, π̂CM =
2
∑

i=0

p̂i = p̂CM,

x̂r1 = x̂1 − x̂0, π̂1 = m1

(

p̂1

m1

− p̂CM

M

)

,

x̂r2 = x̂2 − x̂0, π̂2 = m2

(

p̂2

m2

− p̂CM

M

)

,

(24)

and

q̂CM = 1
M

2
∑

i=0

mix̂i = x̂CM, p̂CM =
N
∑

i=0

p̂i,

q̂1 = γ
(

x̂1 − m0x̂0+m2x̂2

m0+m2

)

, p̂r1 = µ01

(

p̂1

m1
− p̂0

m0

)

,

q̂2 = γ
(

x̂2 − m0x̂0+m1x̂1

m0+m1

)

, p̂r2 = µ02

(

p̂2

m2
− p̂0

m0

)

,

(25)

where γ = m0m1m2

Mµ01µ02
and µ0j = m0mj/(m0 + mj). It is immediately seen that the

relative observables accessible from within the quantum reference frame, namely x̂rj
and p̂rj , are not canonically conjugated operators, so that they do not span a joint
Hilbert space in the usual sense. Actually, the Hilbert space spanned by them are
intrinsically nonlocal in the sense that

e−i δ p̂r1
/~|xCM〉|xr1〉|xr2〉 = |xCM〉|xr1 + δ〉|xr2 + µ01

m0

δ〉. (26)

(We omit the subindexes “CM” and “rj” in the kets when there is no risk of confusion.)
As shown in details in Ref. [26], via analysis of a paradox, this result is the expression
of the kickback received by particle 0 in shifting particle 1; the resulting back-action
in the frame implies a relative shift of particle 2 as well. The analogy with classical
physics accurately applies: when we push the planet downwards we get a kickback
upwards and then we see all the remote stars moving together with the planet. In the
limit m0 → ∞ this relative nonlocality disappears, as expected. Indeed, this can be
verified by a direct inspection of the above formulas.

2.3. Uncertainty relations and information

For arbitrary observables Â and B̂ the strongest form of the uncertainty relation reads
∆A∆B >

1
2 |[Â, B̂]|, where ∆A (∆B) stands for the variance of Â (B̂). Naturally,

one may ask how the uncertainty relations look from the perspective of a quantum
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reference frame. Let us consider the extension of the transformation (24) to arbitrary
N ,

x̂CM = 1
M

N
∑

i=0

mix̂i, π̂CM =
N
∑

i=0

p̂i = p̂CM,

x̂rj = x̂j − x̂0, π̂j = mj

(

p̂j

mj
− p̂CM

M

)

,

(27)

where particle 0 is again the quantum reference frame. The momentum of the j-th

particle relative to particle 0 is given by p̂rj = µ0j

(

p̂j

mj
− p̂0

m0

)

. By computing the

commutation relations among all the relative operators one sees that the only unusual
uncertainty relation is given by

∆xrj ∆prk >
~

2

(

mk

m0 +mk

)

(j 6= k). (28)

This is another expression of the relative nonlocal effect associated with the lightness of
the quantum frame. In fact, if m0 → ∞ one gets the usual relation, i.e., [x̂rj , p̂rk ] = 0
and ∆xrj ∆prk > 0 [27]. Further interesting information may be obtained from the
l.h.s. of the above inequality. Using Eq. (27) and the definition of variance one shows
that

(

∆xrj
)2

= (∆x0)
2
+ (∆xj)

2 − 2C(xj , x0),

(

∆prj
)2

=
µ2

0j

m2

0

(∆p0)
2
+

µ2

0j

m2

j

(∆pj)
2 − 2µ2

0j
C(pj ,p0)
mjm0

,

(29)

where C(A,B) := 〈 ÂB̂+B̂Â
2 〉 − 〈Â〉〈B̂〉. As we have seen in a previous analysis, the

relative variances of the j-th particle is increased by the external dispersions ∆x0
and ∆p0 of the quantum frame. Now, however, we note that some correlations, as
denounced by C(xj , x0) and C(pj , p0), may diminish the relative dispersions thus
increasing the relative information about xrj and prj . This is in agreement with the
common-sense intuition according to which a correlation between two parts implies
that information about the state of one is available to the other. Two aspects
underlying these ideas can be illustrated by the following simple example.

Consider two particles of equal masses in a superposition state |x0〉|x1〉 +
|x0 + δ〉|x1 + δ〉, with a proper normalization, composed of Gaussian states |x〉
centered at x and with variance ∆. Given that 〈x0,1|x0,1 + δ〉 = e−α, where
α ≡ δ2/8∆2, one shows that the purity of the subsystem is given by P(ρ̂1) = Tr1ρ̂

2
1 =

1 − 1
2 tanh

2(α). In particular, for well-separated branches in the superposition state,
i.e., for α ≫ 1, the purity approximates 1/2, indicating that the reduced state of
particle 1 relative to the external frame is almost maximally mixed. In this sense,
practically no information about partition 1 is available to the external reference frame.
On the other hand, in the new basis, the state is written (|xCM〉+ |xCM + δ〉)|x1 − x0〉,
so that particle 1 is in a pure state from the perspective of the quantum frame for any
δ; all the information is available in there. The second aspect can be appreciated by
comparing the variances ∆xr1 =

√
2∆ and

∆x1 = ∆xr1

√

1

2
+
α

2

[

1 + tanh(α)
]

. (30)

For α ≫ 1, one sees that ∆x1

∆xr1

≈ √
α ≫ 1, i.e., much more information about the

position of particle 1 is available to the quantum frame, the one correlated with the
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particle. In fact, it is interesting to see how the ratio between the dispersions behaves
as a parametric function of entanglement. For the state under consideration, the
entanglement is given, via linear entropy, by E = 1− P(ρ̂1) =

1
2 tanh

2(α). It follows
that

∆x1
∆xr1

=

√

1

2
+

(1 +
√
2E) arctanh(

√
2E)

2
, (31)

a monotonically increasing function of E. Therefore, the more entangled the state from
the viewpoint of the external frame the less the dispersion of the relative position in
comparison with the external dispersion and, hence, the more the knowledge of particle
0 on the position of particle 1 as compared to the knowledge available to the external
frame. In particular, when entanglement is maximum one has that ∆x1

∆xr1

→ ∞. It is

possible to recognize from this quantitative analysis some elements which support the
motivating issues underlying Everett’s work [1].

So far we have pointed out several conceptual aspects of quantum reference frames
but have not provided any discussion about physical realizations of such ideas. Indeed,
one may wonder to which extent this scenario would actually manifest in practice. In
the next sections, we pursue this aim through the analysis of simple instances involving
a few particles.

2.4. Measuring phases

Consider the following state of two particles:

|ψ〉 = 1√
2

(

|x0〉|x1〉+ eiφ|x0 + δ0〉|x1 + δ1〉
)

. (32)

Again |xi〉 denotes a Gaussian state with dispersion ∆i ≪ δi and center at position
xi relative to the external frame. Using the mapping (1) we obtain

|ψ〉 = 1√
2

(

|xCM, xr1〉+ eiφ|xCM + δCM, xr1 + δr1〉
)

, (33)

where

δCM =
m0δ0 +m1δ1
m0 +m1

and δr1 = δ1 − δ0. (34)

A remark is in order. The state |xCM, xr1〉 is, so to speak, an internally entangled

state, i.e., it cannot be written as |xCM〉|xr1〉 in general. Unlike the situation involving
position eigenstates, such as in Eq. (1), these internal correlations naturally manifest
in general due to the change of basis. A direct calculation of the purity of the relative
state, ρ̂r = TrCM|xCM, xr1〉〈xCM, xr1 |, shows that

P(ρ̂r) = Trrρ̂
2
r =

(m0 +m1)∆0∆1

[(m2
0∆

2
0 +m2

1∆
2
1)(∆

2
0 +∆2

1)]
1/2

, (35)

formula which can be directly generalized for many-particle Gaussian states of
form |x0〉|x1〉 · · · |xN 〉. One sees that |xCM, xr1〉 separates into |xCM〉|xr1〉 only via a
perverse choice of parameters, namely, m0∆

2
0 = m1∆

2
1. Off this regime, such an

internal entanglement will persist. It is important to ponderate, therefore, what the
implications of such internal entanglement are for an observer within the quantum
frame. One may ask, for instance, whether the phase in Eq. (33) could be accessed
in practice from within the quantum frame when δCM = 0, i.e., when entanglement is
present only internally.
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To answer this question, we employ the approach advanced in Ref. [28], which

consists in considering the mean value of the shift operator e−iŜ/~, where Ŝ = δ0p̂0+
δ1p̂1. Using the state (32) we obtain that

〈ψ|eiŜ/~|ψ〉 = eiφ. (36)

Experimentally, the evaluation of the phase φ would require the external observer to
shift both particles by the respective distances δ0 and δ1. Presumably, the procedure
involves to make two copies of the state |ψ〉 (e.g., using a beam splitter), shift one of

them so as to get eiŜ/~|ψ〉, and then look at the overlap with the unshifted one, |ψ〉.
In terms of the new set of operators,

Ŝ = δ0p̂0 + δ1p̂1 = δCMp̂CM + δr1 p̂r1 . (37)

Now we see, from a different perspective, that in general it is necessary to shift not
only particle 1 relatively to particle 0 but also the center of mass relatively to the
external frame. But the position of the center of mass cannot be changed from within
the quantum frame, which, in addition, has been assumed from the outset to have no
access to the outside world. Then, whenever δCM 6= 0 the phase cannot be accessed
by particle 0. Likewise, such a state could not even be generated within the quantum
frame. Therefore, without an external reference frame this kind of state would be
forbidden to exist—an illustration, in terms of spatial degrees of freedom, of the link
between a superselection rule and the lack of a quantum reference frame [2, 3, 16]. On

the other hand, if δCM = 0, then Ŝ = δr1 p̂r1 and eiŜ/~|xCM, xr1〉 = |xCM, xr1 − δr1〉, so
that the phase can be accessed via internal interactions only, despite the existence of
internal entanglement in state (33).

We have advanced towards a more realistic scenario by identifying an operator
whose mean value is able to diagnose whether relative superpositions can be physically
detected from inside the quantum reference frame. Next, we move one step forward.
Further realistic elements are discussed which illustrate the ideas presented thus far
and unveil another important aspect underlying the theory of quantum frames of
reference.

2.5. No disprivileged quantum frame of reference

Consider a double-slit experiment to be realized inside a light rocket. When the
particle passes through the upper (lower) slit, it transfers linear momentum to the
rocket which then moves upwards (downwards). The information about the motion
of the rocket is available only to external observers; it cannot be accessed from within
the closed rocket. The situation, therefore, is such that the position of the rocket
provides which-way information which could be used by external observers to find out
the path chosen by the particle in the experiment. Since which-way information is not
available inside the rocket one may wonder whether the external reference frame is
somehow privileged in relation to the internal one. This thought experiment seems to
defy Bohr’s complementarity principle in the following sense. In possession of which-
way information, an external observer would access the corpusclelike behavior of the
particle whereas for an internal observer the wavelike behavior should manifest. After
all, what would be the outcome of such an experiment?

We explore this issue by analyzing a simplified version of this experiment (see
Fig. 1). Consider an isolated system of two quantum objects. One of them, a particle
of mass mp, moves towards the other, a very light board of mass mb. A beam splitter
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and three mirrors are rigidly attached to the board, which is allowed to freely move
in space.

Figure 1. A particle impinges on a board which is allowed to freely move. The
dotted lines denote the two possible paths in a situation in which the board is
much heavier than the particle.

Before the particle reaches the first mirror we assume that the state of the system
is given by a product of sharp Gaussian states, |0〉b|L〉p, centered at the positions 0
and L relative to some external coordinate system. After passing the beam splitter
and the two later mirrors the particle gets entangled with the board. This occurs
because the board moves in virtue of the momentum conservation. The state of the
system then reads

|ψ〉 = 1√
2

(

|d〉| − L+ d〉+ eiπ/2|0〉|L〉
)

b,p
, (38)

where d = 2Lmp/(mp + mb). The term eiπ/2 accounts for the phase difference
introduced by the beam splitter between reflexion and transmission. Notice that
if mb → ∞, then d→ 0 and the situation often observed in our everyday laboratories,
with no entanglement between the particle and the board, is recovered. However,
for comparable masses, entanglement persists and the reduced state for the particle
no longer retains information about the phase. As mentioned above, which-way
information is available to the external frame so that the particle cannot manifest
wavelike behavior.

The physics seen by the board can be assessed by rewriting state (38) in terms
of the new coordinates:

|ψ〉 = 1√
2

(

|d2 ,−L〉+ eiπ/2|d2 , L〉
)

CM,rp
. (39)

Here no entanglement exists except the internal one, which has been shown not to
prevent the observation of the phase. Therefore, one may conclude that the board,
without any which-way information about itself, sees the particle in a superposition
state, which is representative of the wavelike behavior. Thus, the contrast between
the external and internal predictions has been made explicit.

The solution to the conflict emerges when we explicitly consider the measurement
process. This implies taking into account the spatial state of the measuring device,
clearly specifying to which reference frame it is attached. Furthermore, as we show
next, the correct prediction is made by asking how the state looks relatively to the
measuring device. The aim of this strategy is to take the discussion to the level of the
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measurement, thus avoiding nonphysical preconceptions. We introduce the measuring
device (MD) in the ways depicted in Fig. 2.

(b)   (a)

Figure 2. A measuring device, composed of two mirrors, a beam splitter, and
two detectors, is rigidly attached either (a) to the external frame or (b) to the
board. Dotted lines represent the possible paths for the case in which the whole
setup is much heavier than the impinging particle.

In situation (a) the MD is outside the quantum frame. In order for the MD
to assess the predictions of an external observer it cannot move relatively to this
observer. As we have learned at the beginning of Sec. 2, this requires the MD to
possess an apparent mass mMD → ∞. Besides, the MD must be in a sharply localized
state relative to the external frame, so as to ensure that its position is effectively
known. After the interaction of the particle with the board, the state of the system is
|ψ(a)〉 = |0〉

MD
|ψ〉, where |0〉

MD
denotes that the MD is well localized at the position

0 (relative to the external frame) and |ψ〉 is given by Eq. (38). Now, in terms of
coordinates relative to the MD one has that

|ψ(a)〉 =
1√
2

(

|0, d,−L+ d〉+ eiπ/2|0, 0, L〉
)

CM,rb,rp
, (40)

in agreement with the predictions of the external observer as derived from Eq. (38).
Note that the center-of-mass position is precisely in the MD location. Definitely, the
MD will receive the particle in a mixture, as it is entangled with the board. Then,
there will be no destructive interference in one of the ports and both detectors will be
likely to click. Interestingly, from the perspective of the quantum frame (the board),
now the situation is such that the very MD provides which-way information about the
particle. Indeed, it is not difficult to check that the particle gets entangled with the
MD from the perspective of the board:

|ψ(a)〉 =
1√
2

(

|0,−d,−L〉+ eiπ/2|0, 0, L〉
)

CM,r′
MD

,r′p

, (41)

where r′MD and r′p are, respectively, the coordinates of the MD and the particle seen
by the board. Thus, only the corpusclelike character of the particle will manifest to
any observer; the conflict dissipates.
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On the other hand, in situation (b) the MD is attached to the board and hence can
freely move as well. Now the system board+MD turns out to be an interferometer. In
this case, after the particle impinges on the interferometer the whole system appears
in an entangled state relative to the external frame. In fact, since the MD is rigidly
attached to the board the state of the system reads

|ψ(b)〉 =
1√
2

(

|d′〉|d′〉| − L+ d′〉+ eiπ/2|0〉|0〉|L〉
)

MD,b,p
, (42)

where d′ = 2Lmp/(mp +mb +mMD). Moving to the perspective of the MD one finds
that

|ψ(b)〉 =
1√
2

(

|d′

2 , 0,−L〉+ eiπ/2|d′

2 , 0, L〉
)

CM,rb,rp
. (43)

This is in agreement with the prediction of the internal observer as derived from
Eq. (39). Actually, the above state precisely gives the physics seen by the board as
well, since it is rigidly correlated with the MD. There will be destructive interference
in one of the ports; only one of the detectors will click. In this case, however, it seems
that the external prediction has not been reconciliated with the internal one yet, since
according to Eq. (42) the particle is entangled with the board; which-way information
is still available. The conflict resists here because we have not considered the entire
dynamics towards the detectors. Actually, Eq. (42) refers to the state after the particle
passes by the first part of the interferometer (the board). The complete analysis is
crucial in this case because during the measurement process the detectors can move
under interactions with the particle. Indeed, by carrying on the calculations, under the
assumption of momentum conservation and low dispersion of the Gaussian states, it is
straightforward to show that after the particle passes by the last beam splitter the state
of the system dynamically evolves to |d′〉

MD
|d′〉b| − L+ d′〉p. Therefore, the external

which-way information is erased right before the detection. Again, the contradictions
are all dissipated.

We are now in position to analyze the puzzling questions concerning the double-
slit experiment inside the light closed quantum rocket. When the measuring device
is located inside the rocket, the context has been drawn so as to reveal the internal
physics. In analogy to what we have seen above, we may conclude that in such
an experiment no which-information is available either internally or externally, so
that an interference pattern will be verified inside. On the other hand, when the
measuring device is attached to the external frame, the motion of the rocket provides
which-way information so that the particle cannot interfere. This is consistent with
the viewpoint of the internal observer, since which-way information emerges from the
relative motion of the measuring device. Therefore, as far as the theoretical description
properly accounts for all physical objects participating in a given experiment—
including the measuring device—one may conclude that the quantum reference frame
is not disprivileged in relation to the external frame.

Finally, one should note from the above discussion that the notion of quantum
observer has been properly linked with the measuring device, a finite-mass object
prepared in a determined spatial state. In fact, we have seen that the predictions for
a given observer, as derived originally from states (38) and (39), have materialized
only when the measuring device was attached to the frame of the respective observer.
Besides being a very healthy strategy from a physical point of view, this approach
helps us to formalize some of the concepts explored in this paper and situate them in
an experimental context.
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2.6. Paradox of the third particle – version 2

The title of this section makes reference to a paradox investigated in Ref. [26], in
which an apparent innocuous particle is found to influence the relative physics. Here
the situation is similar, but the crux of the matter is rather different.

Let us remove the board of the experiment (a) in Fig. 2. Now let us assume that
a particle of mass mp approaches the MD in a superposition state. The MD is light
and free to move. In addition, we consider that a third particle, of mass m3, is in a
sharp state centered at a position x relative to the external frame. No assumption is
made on the value of x; the third particle may be as far away as one wishes. The state
of the system is written

|ψ〉 = |0〉
MD

(

| − L〉p + eiφ|L〉p√
2

)

|x〉3. (44)

In terms of coordinates relative to the MD one has that

|ψ〉 =
(

|−mpL+m3x
M ,−L, x〉+ eiφ|mpL+m3x

M , L, x〉√
2

)

CM,rp,r3

, (45)

where M = mMD +mp +m3. We see that the center of mass is entangled with the
relative position of the particle so that the MD cannot access the phase, i.e., both
detectors of the MD are likely to click.

Now, consider that the third particle is much heavier than both the MD and the
impinging particle. The state of the system reduces to

|ψ〉 ≃ 1√
2

(

|x,−L, x〉+ eiπ/2|x, L, x〉
)

CM,rp,r3
. (46)

In this regime the entanglement with the center of mass disappears and the phase
becomes accessible to the MD. Thus the puzzle emerges: how is it possible that the
mass of an arbitrarily distant particle influences the observation of the phase?

Again, it is necessary to discuss how the phase can actually be measured. Based
on the formalism of Sec. 2.4 and on the canonical transformations given by Eq. (25)
one may check that

Ŝ =
2
∑

i=0

δxi p̂i = δqCM p̂CM +
2
∑

j=1

δqj p̂rj . (47)

Now, using the state (44) we see that 〈ψ|eiŜ/~|ψ〉 = eiφ if Ŝ = 2L p̂p. According to
the above equation, we can write

Ŝ = 2L

(

mp

M
p̂cm + γp̂rp −

µMD p

mMD

γp̂r3

)

, (48)

where γ = mMDmpm3/(MµMDp µMD3). This result indicates that the phase cannot be
accessed by means of internal interactions only; the center of mass has to be shifted.
However, if the third particle is sufficiently heavy then

Ŝ ≃ 2L

(

1 +
mp

mMD

)

p̂rp − 2L
mp

mMD

p̂r3 . (49)

In this regime only relative shifts are required, so that the phase can be measured.
But how does it come in practice?

First of all, it is noticeable in the above relation that the task can be accomplished
only if the third particle is touched. That is, the third particle has to effectively
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participate in the experiment; it has to be shifted relatively to the quantum frame.
However, according to the state (46) only the impinging particle needs to be shifted
relatively to the interferometer. Is there any inconsistence here? No. As has been
shown in Ref. [26], and reinforced here by Eqs. (24) and (25), this is just a misleading
interpretation emerging from a preconception according to which relative positions
and relative momenta are canonically conjugated to each other. This is true only if
the frame is much heavier than the system under investigation or in the two-particle
case. From Eqs. (24) and (25) we see that the relative momenta p̂rp and p̂r3 , which

span Ŝ in (49), are conjugated to the position operators q̂p and q̂3, not to the relative
positions xrp and xr3 , to which the state (46) refers. In fact, in terms of the momenta
(24) we see that

Ŝ = 2L p̂p = 2L
(mp

M
π̂cm + π̂p

)

≃ 2L π̂p, (50)

which now agrees with (46). The operator π̂p is the momentum of the impinging
particle relative to the center of mass. But now the center of mass is precisely at the
third particle, which is the heaviest object in the system and does not move relatively
to the external frame. In this capacity, the third particle plays the same role of the
external frame as is apparent from (50); the momentum of the impinging particle
relative to the center of mass, π̂p, is equal to its momentum relative to the external
reference frame, p̂p.

Now we see how the phase can actually be observed by the light MD. All one
needs to do is to attach the mirrors and the beam splitter to the third particle. The
MD no longer needs to shift the particle and just collects it in a superposition state.
Once we realize that the third particle is not innocuous at all, the paradox disappears.
While the third particle played no physical role in the solution of the first version of
the paradox in Ref. [26] here it emerges as the missing reference frame. To better
appreciated this point we should note by Eq. (45) that the center of mass cannot be
prepared in an entangled state by means of internal interactions only. The phase φ
has been prepared, therefore, relatively to some external reference frame. This means
that in order to access the phase one would have to touch such an external physical
structure. However, when particle 3 becomes heavy enough it assumes the role of
the external reference frame, so that the phase can be retrieved through internal
interactions only.

3. Dynamics

At last we examine how the dynamics is seen from a quantum reference frame, which,
as mentioned before, is naturally noninertial by conception. Let us consider a closed
universe composed of N + 1 particles interacting via conservative forces. From the
point of view of an absolute reference frame—to be posteriorly abandoned—the total
energy of the system can be described by the Hamiltonian

Ĥ =

N
∑

i=0

p̂2i
2mi

+ V̂ (x̂0, x̂),

V̂ (x̂0, x̂) =
N
∑

j=1

V (x̂j − x̂0) +
N
∑

j=1

N
∑

k>j

V (x̂k − x̂j),

(51)

where x̂ = (x̂1, . . . , x̂N ). The usual formulation of quantum mechanics is assumed
to hold relatively to the external absolute frame, i.e., the dynamical evolution of the
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system is governed by i~ ∂t|ψ〉 = Ĥ |ψ〉, with Ĥ given above. Now we move to the new
canonical operators, those given by Eq. (27). The observable x̂rj refers to the position
of the j-th particle relative to particle 0 (the quantum frame) whereas π̂j refers to the
momentum of the particle relative to the center of mass. The above Hamiltonian is

then rewritten Ĥ =
p̂2

CM

2M + Ĥrel, where

Ĥrel =
N
∑

j=1

π̂2
j

2mj
+ V̂ (0, x̂r) +

Π̂2

2m0
, (52)

with x̂r = (x̂r1 , . . . , x̂rN ), and

Π̂ ≡
N
∑

j=1

π̂j =
m0

M
p̂CM − p̂0. (53)

Clearly, the center of mass does not interact with the relative degrees of freedom and
hence its momentum is constant. Moreover, since there is nothing else outside the
system, the center of mass can never get entangled with the relative partitions. It
follows that all quantum states prepared via internal interactions will be perceived by
particle 0 as a pure state. On the other hand, from the external perspective, particle
0 will generally be entangled with the other particles. As we have seen previously
(Sec. 2.3), these correlations derive from the fact that in the preparation process the
quantum reference frame acquires information about the state of the system. Also, by
Eq. (53) we see that Π̂/m0 can be interpreted as the velocity of particle 0 relative to
the center of mass, so that the last term in Eq. (52) is the kinetic energy of particle 0
relative to the center of mass.

The formula we have found for Ĥrel differs from AK’s [6] in that here we allow
the particles to interact with the quantum frame. This makes the operator Π̂—a
vector potential in AK’s terminology—to be the expression of noninertial forces acting
inside the quantum frame. To verify this we take the time derivative of the Heisenberg
velocity,

˙̂xrj =
π̂j
mj

+
Π̂

m0
=
p̂rj
µ0j

(j > 1), (54)

and note, by Eq. (53), that dΠ̂/dt = − ˙̂p0 = −m0
¨̂x0. We then obtain that

¨̂xrj =

(

−∂x̂rj
V̂
)

mj
− ¨̂x0 =

˙̂prj
µ0j

, (55)

where V̂ = V̂ (0, x̂r). Clearly, this is the equation of motion of a particle within a
noninertial quantum reference frame that moves with acceleration ¨̂x0 relative to the
absolute space. Inside this frame, the quantum dynamics of particle j can be correctly
explained only by the introduction of the fictitious force

mj

m0
dΠ̂/dt.

The operator Π̂ is, therefore, the formal manifestation of the kick back that the
quantum reference frame suffers under interactions with the system. In fact, if particle
0 does not interact with the other particles then V (x̂rj ) = 0 and i~ dΠ̂/dt = [Π̂, Ĥ] = 0,
which leads (55) to reproduce the equation of motion expected for an inertial frame.
In addition, if m0 is arbitrarily heavy then no recoil is expected for the frame.
Accordingly, the kinetic energy Π̂2/2m0 becomes negligible and Π̂ disappears from
the formalism. The typical equations of motion of inertial reference frames are thus
readily recovered.
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At this point it is insightful to observe an important difference to approaches
involving classical frames of reference. Let us consider a change in the origin of
the coordinate system. In classical mechanics, this can be implemented by the
transformation x′j = xj − x0, which defines the position of the j-th particle of the
system relatively to an arbitrary, eventually immaterial, classical origin x0. Usual
procedures in classical mechanics allows us to construct a canonical formulation
starting from absolute kinetic and potential energies, such as those in Eq. (51), for a
system of N particles. The quantization of the resulting Hamiltonian leads to

Ĥ ′
+ =

N
∑

j=1

p̂′2j
2mj

+ V̂ (0, x̂′
j)− ẋ0P̂

′, (56)

where P̂ ′ =
∑

j p̂
′
j. It follows that mj

¨̂x′j = −∂x̂′

j
V̂ −mj ẍ0. The resemblance of these

results with those expressed by Eq. (52) and (55) is apparent. Yet, note that the
Hamiltonian

Ĥ ′
− =

N
∑

j=1

p̂′2j
2mj

+ V̂ (0, x̂′
j) +Mẍ0X̂

′, (57)

with X̂ ′ = 1
M

∑

jmj x̂
′
j , yields the same equation of motion for the j-th particle.

Particularly in this case we have an illustration of the equivalence principle, according
to which an observer within a frame with external acceleration ẍ0 predicts that the
center of mass of the system is immersed in a local gravitational field with energy
Mẍ0X̂

′.
Although the equations of motion produced by the above Hamiltonians are

identical, the interpretation in each case is slightly different. For Ĥ ′
+ the fictitious

force −mẍ0 appears because the velocity ˙̂x′j = p̂′j/mj − ẋ0 depends on a kind of

vector potential. On the other hand, for Ĥ ′
− the noninertial force comes from a

fictitious gravitational potential. Actually, it is easy to check that Ĥ ′
+ and Ĥ ′

− are
specializations of the one-parameter Hamiltonian

Ĥ ′
ǫ =

N
∑

k=1

p̂′2k
2mk

+ V̂ (0, x̂′
k)−

(1 + ǫ)

2
ẋ0P̂

′ +
(1 − ǫ)

2
Mẍ0X̂

′, (58)

which produces mk
¨̂x′k = −∂x̂′

k
V̂ −mkẍ0 regardless the choice for ǫ. These remarks

show that as far as a change of classical frames is concerned the noninertial effects can
be suitably accounted for via either vector potentials or fictitious gravitational fields,
or even via both simultaneously.

Naturally, one may wonder whether this gauge-like invariance applies to the
physics relative to a quantum reference frame, as given by Eq. (52). An inspection
of the structure underlying Ĥ ′

ǫ shows that this cannot be the case for Ĥrel. For
instance, one could try, by analogy, to express the latter in terms of a potential energy
∑

kmkx̂rkdΠ̂/dt. However, since i~ dΠ̂/dt = [Π̂, V̂ ] = f(x̂r), the resulting energy
would be nonlinear in the position operators and the notion of a local gravitational
field, as in

∑

kmkx̂
′
kẍ0, would not maintain. Moreover, it is easy to check that this

attempt would not generate the correct equations of motion. Thus, the structure
offered by the Hamiltonian (52), with velocities given by Eq. (54), relying on the
analogy with vector potentials, turns out to be the most natural canonical formulation
for the physics within a noninertial quantum reference frame. Although not as intuitive
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as a description based on gravitational fields, it succeeds in producing the correct
predictions for the dynamics of particles in accelerated frames.

As a final remark, we note that besides accounting for the noninertial effects in
the Heisenberg equations the kinetic term Π̂2/2m0 is the ingredient responsible for the
apparent nonlocality found in the vector state whenever the reference particle interacts
with the system (see Sec. 2.2). This can be easily illustrated in a simple system, say
with equal-mass particles 0, 1, and 2, where particle 0 interacts only with particle 1.
Suppose that a potential V̂ (x̂1 − x̂0) = V̂ (x̂r1) is able to dynamically transform the
state |ψ〉t0 = |0〉0|0〉1|3a〉2 into

|ψ〉t =
( | − a〉0|a〉1 + |a〉0| − a〉1√

2

)

|3a〉2

=

( |a, 2a, 4a〉+ |a,−2a, 2a〉√
2

)

CM,r1,r2

. (59)

Clearly, while V̂ (x̂r1) acts locally in the relative partitions the term Π̂2 can produce
the above relative entanglement through the coupling π̂1π̂2.

4. Conclusion

In this paper we aimed to carry on the program initiated in Refs. [1, 2, 3, 4, 5, 6] and
retaken in Ref. [26] which aims to formulate a relational version of quantum mechanics.
This includes to abandon the primitive notion of a classical reference frame in the
background of the theory so as to obtain a self-contained quantum formulation free of
any classical stuff. Here the goal was achieved for spatial degrees of freedom through a
usual strategy, which consisted in starting from the ordinary formalism—presumably
valid from the perspective of an absolute inertial frame of reference external to the
system—and then to move to center of mass plus relative coordinates.

Many interesting aspects underlying the kinematics in quantum reference frames
were unveiled and understood. First, we showed that the state seen by a quantum
particle fundamentally depends on the masses of the particles, a distinct nonclassical
effect. Second, we found out the characteristics that make the quantum reference
frame equivalent to the classical absolute one, thus identifying how the notion of
classicality emerges from the quantum substratum. Third, we discussed the emergent
nonlocality which derives from the lightness of the quantum frame. As pointed
out (see also Ref. [26]), the Hilbert space associated with the relative partitions
is fundamentally nonseparable. Fourth, we analyzed how the uncertainty relations
and external correlations manifest in the perspective of the reference particle. Next,
some puzzling questions were investigated which highlighted the need for correctly
accounting for the measuring device as a quantum particle of the system. We showed
that in theses circumstances the complementary principle is verified by all observers.
Moreover, it follows from our approach that no detector is absolutely classical, as
it is not spatially localized from all perspectives. Finally, it was shown throughout
the presentation how to distinguish realistic correlations from those derived from the
absolute motion of the quantum frame.

As far as the dynamics is concerned, we derived a Hamiltonian formulation
for quantum reference frames, which are, in essence, noninertial. In reference to
Aharonov’s works [4, 5, 6], we derived a canonical formulation of the physics seen
from the perspective of noninertial quantum frames in which fictitious forces manifest
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formally as vector potentials. The resulting relative Hamiltonian, conveniently
decoupled from the center of mass, exhibits momentum-momentum coupling which
correctly accounts for the relational nonlocality.

In conclusion, we have shown how to suitably describe and interpret the physics
of spatial degrees of freedom from the perspective of a noninertial quantum frame of
reference. Although our arguments have been given for one-dimensional systems, we
do not expect the extension to higher spatial dimensions to be much more involved
technically. Conceptually, however, further puzzling issues are likely to appear. As far
as we can see, the conjugation of this contribution to Refs. [6, 26] constitutes a rather
complete conceptual framework for the physics seen from a quantum reference frame.
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Appendix A. The Aharonov-Kaufherr transformation

The canonical transformation proposed by Aharonov and Kaufherr in Ref. [6], for a
system of two particles, reads

q̂0 = x̂0, π̂0 = p̂0 + p̂1,
q̂1 = x̂1 − x̂0, π̂1 = p̂1.

(A.1)
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Notably, the new canonical momentum π̂1 keeps referring to the absolute frame. Given
the change of basis

|x0〉x0
|x1〉x1

= |x0〉q0 |x1 − x0〉q1 ,
it is easy to show that a generic two-particle state

|ψ〉 =
∫

dx0dx1 ψ(x0, x1) |x0〉x0
|x1〉x1

(A.2)

rewrites

|ψ〉 =
∫

dq0dq1

[

eq0∂q1ψ(q0, q1)
]

|q0〉q0 |q1〉q1 .

The elements of the reduced density matrix ρ̂q1 = Tr0 (|ψ〉〈ψ|) are given by

〈χ|ρ̂q1 |χ+ δ〉 =
∫

du eu∂χ

[

ψ(u, χ)ψ∗(u, χ+ δ)
]

,

which is insensitive to the masses, in contrast with our previous result (4). The reason
for this apparent conflict can be understood as follows.

One of the main lessons of Ref. [26] is that the Hilbert space of light frames
is intrinsically nonlocal. The immediate consequence of this fact is that our usual
representations of quantum states must be reviewed carefully, as illustrated throughout
this paper. In particular, it is shown that descriptions given in terms of relative
coordinates, without any assessment of the physical content of the correlations, may
lead to all sort of nonphysical preconceptions. It follows that the safer description
turns out to be the one accounting for information about the momenta as well.

One option is to rewrite Eq. (A.2) by inserting a momentum basis so as to get

|ψ〉 =
∫

d2~x d2~p

2π~
e−i~p·~x/~ ψ(~x) |~p 〉p,

where d2~p = dp0dp1 and |~p〉p = |p0〉p0
|p1〉p1

, with equivalent relations for ~x. In terms
of the new variables, as defined by Eq. (A.1), one gets

|ψ〉 =
∫

d2~q d2~π

2π~
e−i~π·~q/~ ψ(~x(~q)) |~π 〉π.

The crucial point is that this representation does not refer solely to the relative physics.
In fact, by Eq. (A.1) one sees that π1 actually is the absolute momentum. The purely
relative description can be obtained by noting that π0 = pCM, π1 = p1 = pr +

m1

M pCM,
and |π0〉π0

|π1〉π1
= |π0〉pCM

|π1 − m1

M π0〉pr
. Using the notation ~℘ = (pCM, pr) one shows

that

|ψ〉 =
∫

d2~q d2 ~℘

2π~
e−i~℘·~q/~ e−

ipCMq1
~

m1

M ψ(~x(~q)) |~℘ 〉℘,

which explicitly depends on the masses. From this result one may infer that any
representation involving relative coordinates and momenta will necessarily depend on
the masses.
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