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The notion of integrability is discussed for classical nonautonomous systems with one degree of
freedom. The analysis is focused on models which are linearly spanned by finite Lie algebras. By
constructing the autonomous extension of the time-dependent Hamiltonian we prove the existence
of two invariants in involution which are shown to obey the criterion of functional independence.
The implication of this result is that chaotic motion cannot exist in these systems. In addition, if
the invariant manifold is compact, then the system is Liouville integrable. As an application, we
discuss regimes of integrability in models of dynamical tunneling and parametric resonance, and in
the dynamics of two-level systems under generic classical fields. A corresponding quantum algebraic
structure is shown to exist which satisfies analog conditions of Liouville integrability and reproduces
the classical dynamics in an appropriate limit within the Weyl-Wigner formalism. The quantum
analog is then conjectured to be integrable as well.

PACS numbers: 02.30.Ik,02.20.Sv,03.65.-w

I. INTRODUCTION

The importance of the notion of integrability in clas-
sical mechanics is unquestionable. This is so because
it allows for the whole set of dynamical systems to be
classified in two well distinguishable categories, namely,
the regular (integrable) and chaotic (nonintengrable) sys-
tems. In particular, this discrimination finds rigorous
support in the Arnold-Liouville theorem [1–3], which
guarantees distinct properties for the dynamics of sys-
tems with a sufficient number of invariants. Among these
properties a noticeable one is the confinement of the dy-
namical flux to invariant tori. This implies that angle-
action variables exist and that the canonical equations
of motion can be integrated by quadratures [3]. Further-
more, the Arnold-Liouville theorem provides insights for
the definition of operational tools, such as Lyapunov ex-
ponents and Poincaré maps, which allow for the classi-
fication of the system even when the conditions of the
theorem are not found.

The above mentioned theory of integrability is elab-
orated for autonomous systems, whose Hamiltonian is
a constant of motion. However, there is an unquotable
number of works, in many different fields of physics and
mathematics, dedicated to systems describable by nonau-
tonomous Hamiltonians, which depend explicitly on time
and hence are no longer time-invariant quantities (see,
e.g., Refs. [4–6] and references therein for a few exam-
ples). Within this category, we find a very important
subset composed of systems with 1.5 degrees of freedom,
whose formulation is given in terms of a Hamiltonian
H(x, t) with one degree of freedom, x = (q, p), plus ex-
plicit time dependence. These models have shown to be
of great relevance for many theoretical and experimen-
tal investigations, as for instance in the problem of dy-
namical tunneling [5, 7]. In virtue of their time depen-
dence, Hamiltonians of type H(x, t) are known to display

a rather rich dynamics, chaotic in general, kicked sys-
tems being emblematic examples [7]. In some cases, on
the other hand, although complex, the dynamics is still
regular, as in the case of the polemic chaotic Rabi oscil-
lations of two-level systems under quasiperiodic classical
fields [4, 8, 9]. This model will be assessed here in the
light of our results.

In the context of nonautonomous formulations, Lie
Hamiltonian systems are particularly important. Be-
cause they are, by definition, linearly spanned by a finite
Lie algebra, several mathematical results have succeeded
to be derived which assess the conditions for the explicit
integrability of the equations of motion, in both classical
and quantum mechanics [10–15]. This paper is devoted
to discuss the integrability in this arena. In the first part,
we show that models with one degree of freedom are inte-
grable. Our result establishes sufficient conditions for the
absence of chaos in this important class of systems and
hence gives rigorous arguments attesting the integrability
of the aforementioned two-level systems.

Next, we proceed to the extension of our result to the
quantum domain. Attempts on the elaboration of the
notion of quantum integrability date back to the 1980’s
with Korsch [16], who claimed that a classically inte-
grable system would naturally be quantumly integrable
as well. Soon after, however, Hietarinta [17, 18] showed
that Korsch’s rules for the quantum-classical correspon-
dence are not generally applicable. Later on, Zhang and
co-authors [19] discussed the problem of the ambiguity
underlying the concept of quantum degrees of freedom
and proposed a definition of quantum integrability in
terms of dynamical symmetries. Further, Weigert [20]
and Gallardo and co-authors [21] highlighted difficulties
in translating the concept of independent constants to
the quantum formalism. In addition, it is possible to
quote many other different approaches to the problem
of quantum integrability (see Refs. [19, 22–25] and refer-
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ences therein). Despite this long-standing debate on the
notion of quantum integrability there is no consensual
definition to date.
Our contribution will consist in constructing a quan-

tum model in one-to-one correspondence with the clas-
sical one, specifically in what regards the Lie algebraic
structure and the existence of a dynamical invariant. We
will show that the corresponding quantum system sat-
isfies conditions analogous to those which preclude the
existence of chaos in the classical model. As a conse-
quence, we will naturally be lead to conjecture in favor
of the integrability of the quantum analog.
In order to prove our results we will gather some im-

portant methods often applied in different contexts. The
theory of dynamical invariants, which was born long ago
with the seminal works by Noether [26], Lutzky [27], and
Lewis [28], and has gained increasing interest through the
consecutive decades [29–34], will be invoked to search for
invariants. Another valuable tool, usually subsidiary to
the theory of invariants, is the notion of dynamical al-
gebra [29–31]. The conjugation of these two methods
has proven to be of great relevance to the approach of
a variety of quantum problems [6, 35–40], after pioneer
studies by Lewis and Riesenfeld [28, 41]. In addition,
we will apply Howland’s method [42–44] to construct an
autonomous extension for the time-dependent Hamilto-
nian and, finally, the Weyl-Wigner formalism [45–48] to
establish the quantum-classical link.

II. PRELIMINARY NOTIONS

In this paper we often invoke the notions of integra-
bility and chaos as two complementary properties. For
completeness, we review some commonly used statements
about these concepts.
Although there is no universal definition of chaos,

some conditions are usually associated to the existence
of chaotic motion in dynamical systems. In this sense,
one may regard them as a definition of chaos [49, 50].

Definition 1 (Devaney’s chaos). A map f : X → X
is said to be chaotic on a space X if (i) f has sensitive
dependence on initial conditions, (ii) f is topologically
transitive, and (iii) the periodic points are dense in X.

Actually, it has been recognized [50] that the last two
(topological) conditions in fact imply sensitivity to initial
conditions, so that the first condition above, which is
far more relevant for practical purposes, turns out to be
redundant.
Topological transitivity (or topological mixing [50]), on

the other hand, is crucial. f is said to be transitive if for
any two nonempty open subsets U and V of X , there
is a natural number n such that fn(U) ∩ V 6= ∅. Intu-
itively, it means that any given region or set of points
in X will eventually overlap with any other given region.
Equivalently, transitivity also means that f has a dense
orbit [50]. By definition, one expects transitivity to exist

only when the motion occurs on compact and connected
manifolds. That is why the flows generated by some sim-
ple one-dimensional Hamiltonians, such as H = qp or
H = p2 − q2, though exponentially sensitive to initial
conditions, are not chaotic: the energy surfaces are not
compact and the map cannot be transitive.
Density of periodic points means that every point in

space is arbitrarily closely approached by periodic orbits.
The conjugation of topological transitivity with periodic
orbits implies the global orbit structure to be marked by
an inextricable intertwining of density and periodicity.
This leads to homoclinic and heteroclinic tangle [51] and
hence to sensitive dependence on initial conditions.
It is also common to define chaos in terms of its nega-

tion. This is motivated by the Arnold-Liouville theo-
rem [3], which defines the class of completely integrable
systems (or Liouville-integrable systems).

Theorem 1 (Arnold-Liouville). Suppose we are given
n functions F1, · · · , Fn in involution, {Fi, Fj} = 0, and
functionally independent on a level set

Mf = {x : Fi(x) = fi, i = 1, · · · , n}

on the 2n-dimensional manifold. Then (i) Mf is a
smooth n-dimensional manifold, invariant under the
phase flow with Hamiltonian function H = F1. In ad-
dition, if the manifold Mf is compact and connected,
then (ii) it is diffeomorphic to a n-dimensional torus,
the phase flow generated by H is conditionally periodic
(so that angle-action variables do exist in a neighborhood
of Mf ), and the canonical equations can be integrated by
quadratures.

Liouville integrability is, therefore, synonymous of ab-
sence of chaos: the motion is confined to invariant sub-
manifolds, so that topological transitivity does not exist
on the energetically accessible space, the motion is fun-
damentally periodic and the solutions of the equations
of motion are trivially integrated by quadratures. Thus,
there is no room for complex motion.
It is important to note at this point that the theorem

ensures integrability only when the invariant manifold
is compact and connected. This condition is commonly
ignored but it is in fact not automatically implied by
the existence of the invariants. Moreover, the theorem
does not provide any mathematical test allowing for the
discrimination of the manifold features.

III. CLASSICAL INTEGRABILITY

We are now ready to state and prove our first result. It
establishes sufficient conditions for Lie systems with 1.5
degrees of freedom to be integrable. Differently from the
Lie-Scheffers theorem (see Theorem 1 in Ref. [10]), which
guarantees the existence of a superposition rule for Lie
systems with arbitrary dimension but requires a set of
particular solutions to be found in order to construct the
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explicit solution, here we ensure integrability (absence of
chaos), but for the dimension one and a half.

Proposition 1. Let H(x, t) be the Hamiltonian of a
nonautonomous system with a single degree of freedom,
x = (q, p), where q and p are canonical variables satis-
fying {q, p} = 1. If the Hamiltonian is expansible as a
linear combination of the elements {O1, O2, · · · , OM} of
a finite Lie algebra, i.e.,

H(x, t) = h(t) ·O(x) =
M
∑

i=1

hi(t)Oi(x) (1a)

and

{Oi, Oj} =

M
∑

k=1

γk
ij Ok, (1b)

where γk
ij = −γk

ji, and if hi(t) are complex-valued func-
tions continuous on the interval a 6 t 6 b, then (i) an
invariant of form

I(x, t) = g(t) ·O(x) =

M
∑

i=1

gi(t)Oi(x) (1c)

exists on the interval. Let K(x, y) and I(x, θ), where y =
(θ, J), be the autonomous extensions of the Hamiltonian
and the invariant, respectively. If the two-dimensional
manifold

MKI = {(x, y) : K(x, y) = K, I(x, θ) = I} (1d)

is compact and connected, then (ii) H(x, t) is Liouville
integrable. If MKI is otherwise noncompact, then (iii)
the dynamics generated by H(x, t) is nonchaotic.

The remainder of this section is devoted to the proof of
this proposition and its application to systems of phys-
ical interest. First, we invoke the Lewis-Reisenfeld the-
ory [41], according to which an invariant of form (1c) is
required to satisfy the relation

∂tI(x, t) + {I(x, t), H(x, t)} = 0, (2)

so as to ensure that İ = 0. By plugging Eqs. (1a) and
(1c) into Eq. (2) one finds that

ġk(t) =

M
∑

i,j=1

hi(t) γ
k
ij gj(t). (3)

This linear system of coupled differential equations can
be summarized in matrix form as ġ = F(t)g. Now,
if h(t) is continuous within the interval a 6 t 6 b, if
a 6 t0 6 b, and if |g0| < ∞, then the theorem of existence
and uniqueness guarantees that the above system has a
unique solution g(t) with initial condition g(t0) = g0 ex-
isting on the interval (see, e.g., Ref. [52]). It follows that
a dynamical invariant of form (1c), whose initial value
I(x0, 0) is not fixed a priori, will exist on the interval,
thus proving part (i) of the proposition. Note that for

most physical systems the interval of existence comprises
the entire positive real line. Also, it is worth mention-
ing that this result consists in a generalization of those
recently reported in Ref. [14].
Theorem 1 requires, as a first condition to diagnose

integrability, as many invariants as the number of degrees
of freedom. Here we have proved the existence of a single
invariant for a system with 1.5 degrees of freedom. Then
the question arises whether it is enough. As we show now
the answer is positive. Our strategy consists in moving
to a two-dimensional formulation and then proving the
existence of two functionally independent constants in
involution.
We start by constructing the autonomous two-

dimensional extension of H(x, t). Our problem of initial
value can be written as

dx

dt
= {x,H},

x(0) = x0,

(4)

where x0 = (q0, p0). The procedure consists in introduc-
ing an extended dynamical problem,

dx

dt
= {x,K},

dy

dt
= {y,K},

(x(0), y(0)) = (x0, y0),

(5)

governed by an autonomous Hamiltonian

K(x, y) := H(x, θ) + J, (6)

with an additional degree of freedom, y = (θ, J), such
that y0 = (0, J0) and {θ, J} = 1. In effect, the equiv-
alence with the original dynamics can be straightfor-
wardly verified by realizing, from Hamilton’s equation,
that θ(t) = t. It is then immediate that Eq. (5) repro-
duces Eq. (4). This scheme is sometimes referred to as
Howland’s method [42, 43]. It takes us to an autonomous
formulation within which the new Hamiltonian K is a
constant of motion, a fact than can be easily proved from
the Hamilton equation for J .
Under the replacement t → θ, one then shows that

I(x, t) is an invariant in involution with the autonomous
Hamiltonian K(x, y). Let us compute the time derivative
of the invariant:

İ = {I,K} = {I,K}x + {I,K}y

= {I,H}x + ∂θI. (7)

Since θ = t the above relation implies, by Eq. (2), that
{I(x, θ),K(x, y)} = 0, as we wanted to show. Therefore,
we have moved to a two-degrees-of-freedom description
for which two invariants exist in involution.
We are now left with the task which is often neglected

(as pointed out in Ref. [20]) in many treatments of quan-
tum and classical integrability: the assessment of the
functional independence. In classical mechanics, this no-
tion can be stated as follows [2, 3].
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Definition 2. Let the flow direction produced by
an invariant Ik be defined by the phase-space veloc-
ity vIk = (dr/dt)Ik = LIk, where L = Lx + Ly,
Lx,yIk := {r, Ik}x,y, and r = (x, y). The set of invariants
{I1, I2, · · · , IN} is functionally independent if the vectors
vI1 ,vI2 , · · · ,vIN are linearly independent.

Let V = aKvK + aIvI be a linear combination of the
phase-space velocities generated byK and I. By noticing
that K(x, y) = h(θ) ·O(x) + J and I(x, θ) = g(θ) ·O(x),
we write

V = (Lx + Ly)(aK K + aI I)

= [aK h(θ) + aI g(θ)] · LxO(x)

− [aK h′(θ) + aI g
′(θ)] ·O(x) eJ + aK eθ, (8)

where aK,I are arbitrary real numbers and eθ, J are
unitary vectors denoting orthogonal directions in phase
space.
The proof of the functional independence of K on I is

given by reductio ad absurdum. Assume that vK and vI

are linearly dependent, so that the solution for V = 0
is to be given for nonvanishing aK and aI . However,
from Eq. (8) we see that the only solution allowed is
aK = aI = 0, which contradicts the initial assumption.
Hence, vK and vI are linearly independent and K(x, y)
and I(x, θ) are functionally independent.
It follows, by implication (i) of the Arnold-Liouville

theorem, that the evolution of any initial condition is
confined to a two-dimensional invariant manifold MKI,
as defined by Eq. (1d). Then, ifMKI is compact and con-
nected, Theorem 1 immediately ensures Liouville integra-
bility for K(x, y). Given the proven dynamical equiva-
lence of K(x, y) with its nonautonomous version H(x, t)
we concluded that the latter is Liouville integrable as
well, thus proving part (ii) of the proposition.
On the other hand, if MKI is noncompact (unlimited)

the existence of recurrent orbits is no longer guaranteed
by the Poincaré recurrence theorem. As a consequence, a
given orbit cannot densely fulfill its energetically accessi-
ble manifold and hence the dynamics cannot be transitive
in general. Then, since one of the conditions for Defini-
tion 1 is not satisfied the motion is not chaotic. This ar-
gument is better appreciated by the formal construction
of the Poincaré map for the autonomous Hamiltonian
K(x, y).
Consider a map f : X → X constructed by the col-

lection of points xn = (qn, pn) obtained from the flow at
the instants tn for which the orbit crosses a plane, say,
Jn = J(tn) = 0. The set of points allowed for the map
necessarily belongs to the level set MKI where the orbit
lives on. For a fixed energy E, the choice of an initial
condition xν , enumerated in X by the real subindex ν,
gives the initial value θν by the relationK(xν , θν , 0) = E.
Moreover, the value E defines all points x ∈ X . It follows
that the invariant assumes a specific value I(xν , θν) = Iν
and thus each initial condition (xν , θν , 0) evolves in time
on a manifold MEIν

= {(x, y) : K(x, y) = E, I(x, θ) =
Iν)}. The intersection of this manifold with the plane

Jn = 0, for every n, can be denoted by

Kν(xn, θn, 0) := K(xν , θν , 0) = E,
Iν(xn, θn, 0) := I(xν , θν , 0) = Iν .

(9)

The subindex ν has been added in Kν(xn, θn, 0) and
Iν(xn, θn, 0) to discriminate the initial condition which
the map refers to. Actually, ν may be thought of as de-
noting the set of initial conditions satisfying (9) for fixed
values of Iν and E. By formally inverting the former
of the above relations, so as to get θn = θn(xn, E), we
rewrite the latter as a function I of xn and E only:

I(xn, E) := Iν(xn, θn(xn, E), 0) = Iν . (10)

The set of curves Iν is dense in X and each single curve
does not intersect another. Now, let us take the set

Uν̄,δ =
{

xn : I(xn, E) = Iν ; ν ∈ [ν̄ − δ, ν̄ + δ]
}

, (11)

composed of the points xn of a contiguous set of curves Iν
such that ν ∈ [ν̄ − δ, ν̄ + δ]. Since each Iν is invariant un-
der the the action of the map, it follows that fm (Uν̄,δ) =
Uν̄,δ for any natural number m. Consider another subset,
e.g., V = Uν̄+3δ,δ. Clearly, fm (Uν̄,δ) ∩ V = ∅, so that
the map f is not topologically transitive and hence non-
chaotic, no matter whether the manifold MEIν

is com-
pact or not. This completes the proof of our result. �

It is worth mentioning that in cases in which I(x, t)
is explicitly known one can invoke a result by Bouquet
and Bourdier [32] which shows how to construct a second
invariant and then integrate the canonical equations by
quadratures, i.e., by using only algebraic operations (in-
cluding the inverse of functions) and integrals of known
functions. This formal result implies that the Hamilto-
nian (1a) is, in principle, integrable, though not necessar-
ily Liouville integrable. It follows also from this analysis
that there is no chaos, in accordance with our result.

A. Applications

To illustrate the relevance of our result we employ it
to assess some important physical problems. First, we
provide some numerical results for a model of dynamical
tunneling, phenomenon which has been experimentally
investigated with ultracold atoms in Bose-Einstein con-
densates [5]. The Hamiltonian may be written as

H(x, t) =
p2

2
+ Ω(t)

q2

2
+ ǫ

q4

4
, (12)

where Ω(t) is a given function of time. (In what follows,
numerical values of all pertinent physical quantities, in-
cluding Ω(t) and ǫ, will be given in arbitrary units.)
If ǫ = 0 the Hamiltonian reduces to the form (1a), with

the algebra {1, q, p, qp, q2, p2}. It follows from our result
that the system is integrable for any well-behaved Ω(t).
On the other hand, for any nonvanishing ǫ, even if arbi-
trarily small, the algebra no longer closes and one cannot
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FIG. 1. Poincaré map, in arbitrary units, for the periodic
function Ω(t) = cos(πt/2). In (a) ǫ = 0 and in (b) ǫ = 0.01.
The inset in (a) corresponds to a zoom in the central dark
region. The introduction of the term ǫ q4/4, even pertur-
bativelly, opens the Lie algebra, thus breaking the sufficient
conditions for Liouville integrability. This fact is denounced
by the appearance of the chaotic sea in (b).

ensure integrability anymore. In Fig. 1 a numerical simu-
lation is presented which illustrates the breakdown of the
integrability when the quartic term is switched on for a
dynamics under the function

Ω(t) = cos(πt/2). (13)

Since Ω(t) is periodic, the Poincaré section turns out
to be equivalent to a stroboscopic map, which is con-
structed by collecting points xn = (q(tn), p(tn)) such that
tn = 2πn/ω. In this example, ω = π/2. All numerical
simulations in this paper were performed with a Runge-
Kutta integrator of 5th order.
Notably, this is a situation in which the invariant is

compact and connected, as can be inferred by the tori
structure in Fig. 1-(a). Hence, the system is Liouville
integrable. When the quartic term ǫ q4/4 is introduced,
many rational tori are destroyed, the Poincaré map be-
comes locally transitive, and sensitivity to initial condi-
tions starts to exist. In Fig. (1)-(b) we see some of the
surviving KAM-tori within the chaotic sea.
Now, we consider the function

Ω(t) = 1 +
1

10
cos t. (14)

When ǫ = 0 the dynamics is marked by the so called para-
metric resonance [3], which yield a highly unstable dy-
namical behavior. According to our result, in this regime

FIG. 2. Poincaré map, in arbitrary units, for the resonant
function Ω(t) = 1 + 1

10
cos t. In (a) ǫ = 0 and in (b) ǫ = 0.01.

The nointegrable term ǫq4/4 introduces bounds to the mo-
tion and leads to the appearance of robust compact manifolds
which resist to the perturbation.

the dynamics, though unstable, is integrable; no chaos is
expected. Interestingly, however, the system is not Liou-
ville integrable. The reason can be understood from the
stroboscopic map of Fig. 2-(a), where points xn are plot-
ted at instants tn = 2πn/ω, with ω = 1. The resonant
motion, typical of forced oscillators, is such that the or-
bits always access farther regions as the system evolves in
time. It follows that the invariant manifolds are clearly
noncompact. Recurrence and transitivity do not occur
and hence the motion is nonchaotic. Although integrable,
the system does not fulfill the conditions for Liouville in-
tegrability. In fact, it is immediate from Fig. 2-(a) that
one could not find angle-action variables. Fig. 2-(b), on
the other hand, in contrast with Fig. (1)-(b), shows an in-
teresting situation in which the breakdown in the algebra
is not followed by a clear emergence of chaos. Actually,
under the introduction of the quartic term the system
seems to become Liouville integrable for that value of ǫ.
Although this behavior is not typical—chaotic behavior
is indeed observed for larger values of ǫ—it illustrates the
fact that Proposition 1 establishes conditions that are not
necessary for integrability.
Even the cases of quasiperiodic functions and nonlinear

Lie algebras are shown to be correctly diagnosed by our
result. First, consider the function

Ω(t) =
1

2

[

cos(et/2) + cos(πt/2)
]

, (15)

with two manifestly incommensurable frequencies. In
Fig. 3, orbits are compared for finite (ǫ = 0) and open
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FIG. 3. Time evolution of (a,c) the initial condition x0 =
(0, 1) and (b,d) eight initial conditions located close to x0 for

Ω(t) = 1

2

[

cos(et/2) + cos(πt/2)
]

. In (a,b) ǫ = 0 and in (c,d)

ǫ = 0.01. In (b) we see that the orbits neither densely ful-
fill the accessible space nor departure significantly from each
other. In (c) a single trajectory integrated for long times
(t = 600) fulfill a region equivalent to that occupied in (d) by
eight orbits integrated for short times (t = 200)—an expres-
sion of mixing.

(ǫ = 0.01) Lie algebras. In contrast with the case of finite
algebra, when ǫ = 0.01 a single long orbit (i.e., integrated
for long times) fulfills a region equivalent to that occu-
pied by eight short orbits (Fig. 3-(c,d)). This behavior—
a manifestation of mixing—is not observed when ǫ = 0
(Fig. 3-(a,b)). In fact, this is corroborated by Fig. 4,
which shows the time evolution of the canonical coordi-
nate q for two close initial conditions, namely, x0 = (0, 1)
and x1 = (0.01, 1.01). Clearly, sensitivity to initial con-
dition does not occur for ǫ = 0. Therefore, also in the
quasiperiodic case, we see that the finite algebra prevents
chaotic motion to exist.
Finally, we consider the nonlinear Hamiltonian

H(x, t) = B(t) ·O(x), (16)

where O(x) = (
√

1− q2 cos p,
√

1− q2 sin p,−q). For
quasiperiodic magnetic fields, i.e., B = B(ω1t, ω2t) with
incommensurable ω1 and ω2, this model was originally
claimed to be chaotic [4]. Soon after, however, numerical
results suggested just the opposite [8]. More recently, an
argument based on Lyapunov exponents and the unitar-
ity of the underlying quantum dynamics has been put
forward attesting the integrability of the model [9]. Our
result supports the latter claim and yet extends it for any
continuous B(t). Indeed, since the components of O(x)
constitute a finite Lie algebra—actually they derive from

FIG. 4. Time evolution of the canonical coordinate q for
the initial conditions x0 = (0, 1) (black thick line) and x1 =
(0.01, 1.01) (red line), for Ω(t) = 1

2
[cos(et/2) + cos(πt/2)]. In

(a) ǫ = 0 and in (b) ǫ = 0.01. Sensitivity to initial conditions
does not occur when the algebra is finite.

a spin-1/2 Lie algebra—Proposition 1 immediately ap-
plies.
We close this section by mentioning that it has been

recently proposed, in the context of quantum mechanics,
the notion of upper quantum Lyapunov exponent [53, 54].
By applying this quantity to the study of the quantum
parametric oscillator, whose Hamiltonian is identical to
that of Eq. (12) with ǫ = 0, the authors have shown to
be able to distinguish between quantum regimes of stabil-
ity and instability. Naturally, one may wonder whether
the upper quantum Lyapunov exponent would be able to
signalize the emergence of chaos under the breakdown of
a Lie algebra, analogously to what we have seen in the
classical case. In our case, an even more basic question
arises: can one guarantee integrability, in some sense, for
quantum systems linearly spanned by finite Lie algebras?

IV. QUANTUM INTEGRABILITY

We now derive our second result and make some in-
ferences on the integrability of a quantum analog of the
Hamiltonian (1a). As mentioned previously, our main
motivation is the manifest interest of the scientific com-
munity in quantum systems with 1.5 degrees of freedom,
many of which have been claimed to display signatures of
quantum chaos. In addition, we are instigated by chal-
lenging formal difficulties around the notions of integra-
bility and chaos in quantum mechanics. In fact, the ab-
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sence of a quantum analog of the Arnold-Liouville theo-
rem seems to preclude one to rigorously formulate theses
concepts. In the context delineated in this paper, how-
ever, we are led by a strong algebraic analogy with its
corresponding classical system to propose a conjecture
about the integrability of the underlying quantum sys-
tem.
Inspired by Proposition 1, we start by proving similar

results for a class of quantum Lie systems [12, 13, 15]
corresponding to that defined by Eq. (1a).

Lemma 1. Let Ĥ(x̂, t) be the nonautonomous Hamil-
tonian of a system with a single degree of freedom,
x̂ = (q̂, p̂), where q̂ and p̂ are the usual canonical
operators satisfying [q̂, p̂] = i~. If the Hamiltonian
is expansible as a linear combination of the elements
{Ô1, Ô2, · · · , ÔM} of a finite Lie algebra, i.e.,

Ĥ(x̂, t) = h(t) · Ô(x̂) =
M
∑

i=1

hi(t) Ôi(x̂) (17a)

and

[Ôi, Ôj ]

i~
=

M
∑

k=1

γk
ij Ôk, (17b)

where γk
ij = −γk

ji, and if hi(t) are complex-valued func-
tions continuous on the interval a 6 t 6 b, then the
following holds.
(i) There exists a dynamical invariant of form

Î(x̂, t) = g(t) · Ô(x̂) =
M
∑

i=1

gi(t) Ôi(x̂), (17c)

with gi(t) continuous on the interval.

(ii) The autonomous extensions K̂(x̂, ŷ) and Î(x̂, θ̂) com-
mute and generate linearly independent vector flows.
(iii) There exists a nonchaotic classical limit for Ĥ(x̂, t).

The proof of Lemma 1 goes as follows. Again, we in-
voke the Lewis-Reisenfeld theory [41], according to which
an invariant of form (17c), in the Schrödinger picture, is
assumed to satisfy the relation

∂tÎ(x̂, t) +

[

Î(x̂, t), Ĥ(x̂, t)
]

i~
= 0, (18)

so as to ensure that

d

dt
〈Î(x̂, t)〉ρ̂ = 0, (19)

for arbitrary ρ̂(0), where 〈Î(x̂, t)〉ρ̂ = Tr[ρ̂(t)Î(x̂, t)]. By
plugging Eqs. (17a) and (17c) into Eq. (18) one obtains
Eq. (3), which leads to the same conclusion of the classi-
cal case and proves part (i) of Lemma 1.

Let us construct the autonomous extension of Ĥ(x̂, t).
Our problem of initial value can be written, in the Heisen-

berg picture, as

dx̂H

dt
=

[x̂H, ĤH]

i~
,

ρ̂(0) = ρ̂0,

(20)

where x̂H = Û †(t) x̂ Û(t), ĤH = Ĥ(x̂H, t) and Û(t) is a

unitary propagator, solution of i~ ∂tÛ(t) = Ĥ(x̂, t)Û(t)

with Û(0) = 1. Introduce an extended dynamical prob-
lem,

dx̂H

dt
=

[x̂H, K̂H]

i~
,

dŷH

dt
=

[ŷH, K̂H]

i~
,

ˆ̺(0) = ρ̂0 ⊗ |0〉〈0|,

(21)

governed by the autonomous Hamiltonian

K̂(x̂, ŷ) := Ĥ(x̂, θ̂) + Ĵ , (22)

with an additional degree of freedom ŷ = (θ̂, Ĵ), such that

θ̂|0〉 = 0 and [θ̂, Ĵ ] = i~. The equivalence between the
nonautonomous and autonomous dynamics is established
as follows. First, note that the Heisenberg equations for

x̂H are decoupled from ĴH and, moreover, θ̂H = θ̂ + t

and 〈0|θ̂H|0〉 = t. This implies that x̂H = x̂H(x̂, θ̂, t)
and 〈0|x̂H|0〉 is the solution of the nonautonomous prob-
lem (20). Finally, in terms of the expectation value of an

arbitrary operator Â(x̂, θ̂), it follows that

Trxy

[

ˆ̺(0) Â(x̂H, θ̂H)
]

= Trx

[

ρ̂(0) Â(x̂H, t)
]

. (23)

This procedure is the Heisenberg equivalent to Howland’s
method [42, 43]. It takes us to an autonomous formula-

tion within which the new Hamiltonian K̂ is a constant of
motion, a fact which can be proved from the Heisenberg
equation for ĴH.

Now we show that, under the replacement t → θ̂,
Î(x̂, t) commutes with the autonomous Hamiltonian

K̂(x̂, ŷ). From Eqs. (23) and (19) it follows, respectively,

that 〈Î(x̂, θ̂)〉 ˆ̺ = 〈Î(x̂, t)〉ρ̂ and d
dt 〈Î(x̂, θ̂)〉 ˆ̺ = 0, which

for an arbitrary ρ̂0 implies that [Î(x̂, θ̂), K̂(x̂, ŷ)] = 0.
The proof of flow independence follows the classical

approach, with some adaptations.

Definition 3. Let the flow direction produced by an in-
variant ÎkH be defined by the velocity v̂ÎkH

= (dr̂H/dt)Îk =

L̂Îk, where L̂ÎkH := [r̂H, ÎkH]/i~ and r̂H = (x̂H, ŷH). The

vector flow generated by the set {Î1H, Î2H, · · · , ÎNH} is in-
dependent if the vectors v̂Î1H

, v̂Î2H
, · · · , v̂ÎNH

are linearly
independent.

Note that K̂(x̂, ŷ) = ĥ(θ̂)·Ô(x̂)+Ĵ and Î(x̂, θ̂) = ĝ(θ̂)·

Ô(x̂). Let V̂H = aK v̂K̂H
+aI v̂ÎH

be a linear combination
of the velocities. It follows that

V̂H = (L̂x̂H
+ L̂ŷH

)(aK K̂H + aI ÎH)

= (aK ĥH + aI ĝH) · L̂x̂H
ÔH

−
[

∂θ̂H(aK ĥH + aI ĝH) · ÔH

]

eJ + aK eθ, (24)
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where aK,I are arbitrary real numbers and eθ, J are
unitary vectors denoting orthogonal directions in phase
space. Clearly, as in the classical context, the only solu-
tion allowed for V̂H = 0 is aK = aI = 0, which implies the
linear independence between v̂K̂H

and v̂ÎH
. Furthermore,

since this conclusion is obtained at the level of opera-
tors it is automatically guaranteed that 〈µ|v̂K̂H

|ν〉 and

〈µ|v̂ÎH
|ν〉 are linearly independent, for whatever states

|µ〉 and |ν〉. This completes the proof of part (ii) of
Lemma 1.
Finally, it is straightforward to show that there exists

a classical limit for the quantum model (17a)-(17c) and
that this classical limit precisely corresponds to the struc-
ture given by Eqs. (1a)-(1c), which is proven integrable.
The approach consists in employing the Weyl-Wigner for-
malism [45–47] to project operators in phase space and
then taking the limit ~ → 0. The classical counterpart A
of a Heisenberg operator ÂH is defined here as

A(x, t) = W0{ÂH} := lim
~→0

W{ÂH}, (25)

where

W{ÂH} =

∞
∫

−∞

du eıup/~〈q − u/2|ÂH|q + u/2〉. (26)

The Weyl-Wigner transform, denoted by W{ · }, maps

the quantum commutator [ÂH, B̂H]/i~ onto the Moyal
bracket [48], which in the strict limit of ~ → 0 reduces
to the Poisson bracket {A(x, t),B(x, t)}. It follows that
the Heisenberg equations are mapped onto Hamilton’s
equations and the classical trajectory in phase space is
obtained via x = W0{x̂H}. Given these relations, it is
just an exercise to show that W0 maps Eqs. (17a)-(17c)
onto Eqs. (1a)-(1c). �

Although we have not provided physical meaning for
the notions of involution and flow independence other
than the analogy with their classical counterparts, the
lemma we have just proved does identify a class of sys-
tems which satisfies conditions conventionally required—
though not rigorously formulated—for the system to be
classified as quantum integrable. In particular, Lemma 1
guarantees the existence of a nonchaotic classical limit.
Now, even though one may argument that not every
quantum system possesses a well-defined classical limit,
so that this would not be a good criterium for quantum
integrability, it is still reasonable to classify as quantum
integrable those which do possess a proven nonchaotic
classical limit. Actually, it would be rather counterin-
tuitive to classify as quantum chaotic a system whose
classical limit is proven nonchaotic.
Additionally, we should remark that our quantum

model can be said integrable also in a further sense.
Hamiltonians of type (17a) have shown to be explic-
itly solvable in several contexts [15, 55]. More impor-
tantly, according to a seminal result by Zhang, Feng,
and Gilmore [56], the time-dependent Schrödinger equa-
tion for these quantum Lie Hamiltonians can be exactly

solved provided the initial state is an arbitrary coher-
ent state. It immediately follows that the Hamiltonian
(17a) is quantum integrable—in the sense of being ex-
plicitly solvable—for the emblematic class of arbitrary
minimum-uncertainty states.
Therefore, the scenario is such that the quantum model

(17a) satisfies several criteria of quantum integrability. In
fact, the existence of a nontrivial quantum invariant, the
algebraic symmetry in correspondence with the classical
structure, the existence of a nonchaotic classical limit,
and a demonstrated explicit solvability in many contexts,
define a set of properties which strongly suggests that
the quantum structure has no ancestral reason to mimic
chaos. In spite of these remarkable evidences, we do not
have rigorous elements to ensure quantum integrability
within broader frameworks [23]. These observations set
the grounds for the following statement.

Conjecture. A quantum system described by a Hamilto-
nian of form (17a), spanned by a finite Lie algebra such
as (17b), is quantum integrable.

Supported by the above arguments, this conjecture as-
serts that a quantum system such as (17a) should be
diagnosed as quantum integrable in any claimed-general
theory of quantum integrability. In particular, our con-
jecture precludes these systems to present any symptoms
of quantum chaos. Whatever the precise substance this
latter term may assume in each context, it often meets
tools for its diagnose. Thus, we do not expect Hamil-
tonians of type (17a) to exhibit any of the well-known
signatures of quantum chaos, as for instance level repul-
sion and Wigner level statistics (within the random ma-
trix approach [24]) or Lyapunov regime (in the Loschmidt
echo decay [25]). These theories turn out to be, therefore,
arenas for preliminary tests of our conjecture.

A. Applications

Note that our conjecture readily applies to the rather
important class of quadratic systems obeying the algebra
{1, q̂2, p̂2, q̂p̂+p̂ q̂, q̂, p̂}, whose physical applications range
from Hamiltonian cosmology to Bose-Einstein condensa-
tion [5, 6]. For this algebra, dynamical invariants and
explicit solutions for the quantum dynamics are known
for a variety of time-dependent parameters.
Another important class of models to which our con-

jecture applies is the one describing a spin-S dynamics
under time-dependent magnetic fields. Given a Hamil-
tonian Ĥ(t) = B(t) · Ŝ, with Ŝ = (Ŝx, Ŝy, Ŝz) and

[Ŝx, Ŝy] = i~Ŝz plus cyclic permutations, one may em-
ploy the Holstein-Primakoff transformation,

Ŝ+ = ~ â†(2S − â†â)1/2, Ŝz = ~ (S − â†â), (27)

where Ŝ± = Ŝx ± iŜy, to proceed the bosonization of
the system. Then, using the ordinary parametrization
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â = 1√
2

(

q̂
b + i p̂c

)

, with bc = ~, one maps the origi-

nal problem onto a one-dimensional Hamiltonian of form
(17a) for which the Lie algebra {Ŝx(x̂), Ŝy(x̂), Ŝz(x̂)},
though composed of elements with a far nontrivial de-
pendence on x̂, is still a closed spin algebra.

V. CONCLUSION

In summary, we have shown that time-dependent
Hamiltonian systems with one degree of freedom linearly
spanned by a finite Lie algebra are regular (nonchaotic)
and mostly Liouville integrable. Differently from many
traditional approaches which look for the explicit solv-
ability of Lie systems, we have used the algebraic fea-
tures of the model to prove, in the lines of the Arnold-
Liouville theorem, the absence of chaos. Our result set-
tles the polemic around the Rabi oscillations in two-level
systems under generic magnetic fields and gives elements
to address many problems involving quasiperiodic fields.
In direct analogy with the classical context, we have

stated a conjecture about the integrability of quantum

systems with analog algebraic features. Our proposal,
which claims the nonexistence of quantum chaos for these
systems, is not only based on the existence of a well-
defined classical limit, proven nonchaotic, but also on a
strong Lie-algebraic correspondence between the quan-
tum and classical structures as well as on the demon-
strated explicit solvability of the model in several con-
texts. Still, we have suggested the notion of quantum
flow independence, which is manifestly inspired by its
classical counterpart and may hopefully be used in fur-
ther elaborations on the notion of quantum integrability.
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Phys. Reports 435, 33 (2006).
[26] E. Noether, Nachr. Ges. Wiss. Goettingen 57, 235 (1918).
[27] M. Lutzky, Phys. Lett. A 68, 3 (1978).
[28] H. R. Lewis Jr., Phys. Rev. Lett. 18, 510 (1967); J. Math.

Phys. 9, 1976 (1968).
[29] H. J. Korsch, Phys. Lett. A 74, 294 (1979).
[30] R. S. Kaushal and H. J. Korsch, J. Math. Phys. 22, 1904

(1981).
[31] R. S. Kaushal and S. C. Mishra, J. Math. Phys. 34, 5843

(1993).
[32] S. Bouquet and A. Bourdier, Phys. Rev. E 57, 1273

(1998).
[33] J. Struckmeier and C. Riedel, Phys. Rev. E 64, 026503

(2001).
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