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Semiclassics around a phase space caustic: an illustration using the Nelson

Hamiltonian
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The semiclassical formula for the coherent-state propagator is written in terms of complex classical
trajectories of an equivalent classical system. Depending on the parameters involved, more than
one trajectory may contribute to the calculation. Eventually, however, two contributing trajectories
coalesce, characterizing what is called phase space caustic. In this case, the usual semiclassical
formula for the propagator diverges, so that a uniform approximation is required to avoid this
singularity. In this paper, we present a non-trivial numerical application illustrating this scenario,
showing the accuracy of the uniform formula that we have previously derived.

Quantum propagators are the fundamental ingredients
in any dynamical description of the quantum theory.
They also provide an important tool for the study of
the quantum-classical connection since their semiclassi-
cal approximations can be intuitively interpreted in terms
of classical trajectories. Naturally, therefore, they have
been widely used in the context of the semiclassical the-
ory. Concerned with the Correspondence Principle, Van
Vleck [1] inaugurated this kind of study by performing
semiclassical approximations on the quantum propagator
in the coordinate representation 〈x′′| exp(−iĤT/~)|x′〉.
According to his calculation, it can be written as a func-
tion of classical trajectories of the Hamiltonian HW , the
Weyl symbol of Ĥ , connecting the initial position x′ to
the final x′′, after a time interval T . Around forty years
later, this result was improved by Gutzwiller and used
to derive his famous Trace Formula [2, 3], which deter-
mines how periodic (and isolated) orbits of HW can be

used to approximate the density of states of Ĥ. Notice
that Gutzwiller’s work goes beyond a semiclassical de-
scription of dynamics. Actually, it filled a gap on semi-
classical quantization methods since his formula applies
to non-integrable systems, contrary to the earlier Bohr-
Sommerfeld [4] and Einstein-Brillouin-Keller [5–7] quan-
tization rules.

Although these seminal developments on the semiclas-
sical theory have essentially involved approximations in
the coordinate representation, similar results can also be
obtained by working with other representations. In par-
ticular, as classical states are usually points in phase-
space, it is claimed to be natural to do semiclassi-
cal physics using the most localized quantum states in
phase-space, requirement accomplished by the coherent
states [8, 9]. This natural predisposition of these states
is corroborated by the great interest in time-evolution
problems based on phase-space pictures, which can be ap-
preciated, for instance, in Heller’s papers [10]. Moreover,
the use of this representation has another advantage to be
involved in semiclassical physics, namely, it can be eas-
ily extended in order to include spin degrees of freedom
by means of spin coherent states [8, 9]. This additional
advantage can be identified already in the first paper
that presents a semiclassical formula for the coherent-
state propagator [11], since it considers both canonical

and spin coherent states. At last, we recall that a deriva-
tion of the Gutzwiller Trace Formula using canonical co-
herent states can be found in Ref. [12], while the analog
for spin coherent states can be found in Refs. [13, 14].
In this paper, we shall focus on semiclassical approxi-

mations of the two-dimensional coherent-state propaga-
tor

K(z′′, z′, T ) = 〈z′′| exp(−iĤT/~)|z′〉. (1)

The states |z〉 = |zx〉 ⊗ |zy〉 are the coherent states that
can be associated to a mass m subjected to a harmonic
potential with frequencies ωr = ~/(mb2r), with r assum-
ing x or y. They are the eigenstates of the annihilation
operator âr, namely, âr|zr〉 = zr|zr〉, where

âr =
1√
2

(

q̂r
br

+ i
p̂r
cr

)

and zr =
1√
2

(

q̄r
br

+ i
p̄r
cr

)

. (2)

Here, cr = ~/br, q̂r and p̂r are, respectively, the po-
sition and momentum operators, q̄r = 〈zr|q̂r|zr〉, and
p̄r = 〈zr|p̂r|zr〉. The numbers br and cr can be also iden-
tified as the widths of |z〉 in position and momentum,
respectively.
According to Refs. [15, 16], in the semiclassical limit,

K(z′′, z′, T ) can be written in terms of functions de-
pending only on trajectories of the classical Hamiltonian
H(v,u), which is achieved by calculating 〈z|Ĥ |z〉, fol-
lowed by the replacement of z and z∗ by u and v, re-
spectively. The relation between the usual classical vari-
ables, q = (qx, qy) and p = (px, py), and the convenient
variables, u = (ux, uy) and v = (vx, vy), is given by

ur =
1√
2

(

qr
br

+ i
pr
cr

)

and vr =
1√
2

(

qr
br

− i
pr
cr

)

. (3)

Hamilton’s equations for u and v are

u̇r = − i

~

∂H

∂vr
and v̇r =

i

~

∂H

∂ur
. (4)

The trajectories involved in the semiclassical evaluation
of Eq. (1) must obey the boundary conditions

u(0) = z′ and v(T ) = z′′∗, (5)
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which imply that q and p are complex, in general. Oth-
erwise, both initial and final phase-space points would
be fixed by the input, so that, generically, there would
be no trajectory satisfying so many restrictions. This
is the reason for the change (z∗, z) → (v,u). Once we
have found such a contributing trajectory, we evaluate
its complex action

S(z′′∗, z′, T ) =
∫ T

0

[

i~

2
(u̇ · v − u · v̇)−H

]

dt− Λ,

(6)
where Λ = i~

2 [u(0) · v(0) + u(T ) · v(T )], and

G(z′′∗, z′, T ) = 1

2

∫ T

0

(

∂2H

∂ux∂vx
+

∂2H

∂uy∂vy

)

dt. (7)

The semiclassical propagator is then given by

K(2)(z′′∗, z′, T ) = N
∑

traj.

√

det
[

i
~
Suv

]

e
i
~
(S+G), (8)

where N = e−
1

2
|z′|2− 1

2
|z′′|2 and

Suv =

(

∂2S
∂z′

x∂z
′′∗

x

∂2S
∂z′

x∂z
′′∗

y

∂2S
∂z′

y∂z
′′∗

x

∂2S
∂z′

y∂z
′′∗

y

)

. (9)

For non-integrable applications, it is convenient to write
the prefactor P of Eq. (8) in terms of elements of M,
which is the stability matrix of the contributing trajec-
tory: P ≡

√

det[(i/~)Suv] =
√

1/ detMvv, where

(

δu(T )
δv(T )

)

=

(

Muu Muv

Mvu Mvv

)(

δu(0)
δv(0)

)

. (10)

Equation (8) is deduced by means of a quadratic ap-
proximation around critical paths (the complex classical
trajectories) of K(z′′, z′, T ), written in the path integral
formalism [15, 16] (see also Refs. [11, 17] for the one-
dimensional case). This is the reason why we insert the
index (2) in the symbol K. In addition, it is explicitly
indicated by the sum in Eq. (8) that, in principle, we
should consider contributions of all trajectories satisfying
boundary conditions (5). At last, as trajectories depend
just on z′′∗ instead of z′′, the label z′′ of K is replaced
by z′′∗ in K(2).
Some trajectories that obey Eqs. (5), when used to

calculate Eq. (8), give origin to non-physical results as,
for instance, probabilities greater than one. This kind of
problem has been reported in several papers [15, 18–22],
and it is assumed that these trajectories refer to critical
points of the path integral quantum propagator impos-
sible to be included in any allowed deformation of the
original contour of integration. Usually, these trajecto-
ries are simply excluded from the calculation. A simple
and useful rule to identify such spurious trajectories con-
sists in writing their contributions to K(2) as eiF/~, so
that we can select the ones whose imaginary part of F0,
defined as the zero-order term of F in its ~-expansion,

is non-negative. Otherwise, in the formal semiclassical
limit ~ → 0, their contributions (∼ e−Im[F0]/~) would
produce a non-physical |K(2)|. Notice that, although S
may have terms on ~, it is a good estimate to think
of Im[F0] = Im[S] − ~ lnN ≡ F0 (for a careful discus-
sion about the ~-dependence of each term of Eq. (8), see
Ref. [17]).
It should be mentioned that the abrupt removal of

a contribution from Eq. (8) is a manifestation of the
well-known Stokes Phenomenon [23–25]. Generically,
it appears when an analytic function (Eq. (1), in our
case) is asymptotically (~ → 0) approximated by a
multi-valued function [the sum of exponential contribu-
tions (8)]. Stokes Phenomenon refers to the fact that
the proper choice of a branch in the approximating func-
tion is domain-dependent. We emphasize that the sudden
change in the form of the approximating function does
not represent its (numerical) discontinuity. Actually, it is
needed in order to assure the continuity manifested in the
function represented. The criterion concerning the sign
of F0 presented earlier combined with considerations on
continuity shall be, therefore, our basis to decide if a
trajectory should contribute to the propagator or not.
Finally, as a generic manifestation of asymptotic approx-
imations, the phenomenon is quite often in semiclassical
physics. Apart from the cases cited earlier concerning
the coherent-state propagator, it can be observed, for
instance, in the WKB method [23, 26] and also in the
propagator in the momentum representation [27].
Besides the problem of spurious contributions in

Eq. (8), it may appear trajectories for the which the pref-
actor P diverges. The point where it happens is called
phase space caustic (PSC), and it is caused by the co-
alescence of contributing trajectories. From the mathe-
matical point of view, it arises because second order cor-
rections of the expansion of K(z′′, z′, T ) around the clas-
sical trajectory vanish. To avoid this problem, we need
to develop improved approximations where further cor-
rections are considered. As it arises from the approach
performed and not because of the trajectory itself, we
point out that, in this case, there is no reason to exclude
a trajectory from the calculation. We shall return to the
treatment of this issue opportunely.
In order to illustrate this rich scenario of spurious tra-

jectories and PSC’s, we apply Eq. (8) to

Ĥ =
1

2

(

p̂2x + p̂2y
)

+

(

q̂y −
q̂x
2

)2

+
µ

2
q̂2x, (11)

known as Nelson Hamiltonian, which has been studied in
both Classical [28, 29] and Quantum Mechanics [30, 31].
Actually, in Ref. [15], we had already used this system
to study the applicability of Eq. (8). Now, we revisit
this work in order to deal with the problem of PSC
there presented, but not solved. As well as we previously
did [15], we shall restrict the application to the case where
z′ = z′′ = z. In addition, we shall also use bx = by = 0.2,
µ = 0.1 and ~ = 0.05. By doing so, five numbers (q̄x, q̄y,
p̄x, p̄y, and T ) become the input parameters to calculate
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FIG. 1. Panels (a)-(c) show the contour plots of |K(2)| in the (T, q̄x) plane. The individual contribution of family fa is shown

in panel (a), while the one of family fb is shown in panel (b). The inset of panel (a) shows the contour curve |K(2)| = 0.33 for

families fa (solid line) and fb (dashed line) superimposed. Panel (c) presents |K(2)| evaluated with both families. Panels (d)
and (e) show the contour plot of F0 for families fa and fb, respectively. While fa has no point where F0 < 0, for fb practically
the whole region inside the contour curve F0 = 10−3 has F0 < 0. Panel (f) combines the plots (a) and (b). In all contour plots,
including those of Fig. 2, some contours were highlighted to facilitate a comparison among them. For panels (a)-(c) and (f),
the difference between two subsequent curves is 0.03 [the same for Fig. 2(a)-Fig. 2(d)]. Axes are the same for all graphs.

K(2). We then define p̄x = |p̄| cos θ, p̄y = |p̄| sin θ, and

E =
1

2
|p̄|2 +

(

q̄y −
q̄x
2

)2

+
µ

2
q̄2x, (12)

holding E = 0.5 and θ = 140◦. Thus, for a given input
pair (T, q̄x), we select q̄y by the rule q̄y = 2q̄x/3, so that
the last undetermined parameter p̄ is solved by the last
equation. We point out that this set of parameters was
chosen in order to find a region containing a PSC, but de-
scribed by a reduced number of variables, namely, T and
q̄x. In the following, we show the evaluation of Eq. (8)
in the plane (T, q̄x) for the interval 0.2 < q̄x < 1.0 and
7.0 < T < 8.0.
For all points (T, q̄x) considered, we found two con-

tributing trajectories to K(2) [32]. Based on continuity
criteria, we can distinguish two families of such trajecto-
ries, fa and fb. The individual contribution of each fam-
ily to Eq. (8) is shown in Fig. 1(a), for fa, and Fig. 1(b),
for fb. Although a clear vertical cut line appears in the
plots, we point out that the combination of both families
gives origin to a continuous two-branch surface exhibit-
ing a Möbius strip structure. In the inset of Fig. 1(a),
we demonstrate this property: By circulating the con-
tour curve |K(2)| = 0.33 of fa, to avoid the discontinuity
at the cut line, one should change to the contour curve
|K(2)| = 0.33 of fb. Then, if one continues to follow this

curve, one arrives again at the cut line, where one can
continuously return to family fa, closing a cycle of two
turns. In Fig. 1(c), we evaluate |K(2)| including both
families. Notice that these three plots present a sharp
peak that demands investigation. In Fig. 2(f), therefore,
we plot the results of Figs. 1(a) and 1(b) just for the line
q̄x = 0.58, where we clearly identify a divergent behavior.
As shown in the inset of this figure, it appears because
of the presence of a PSC, point where P−1 goes to zero.

Apart from the region under influence of the PSC,
which can not be properly evaluated by Eq. (8), the ques-
tion that naturally arises is about which plot satisfacto-
rily approaches the equivalent full quantum mechanical
calculation. In order to answer this point, we plot in
Fig. 1(d) and Fig. 1(e) the value of F0 for fa and fb,
respectively. From them, and according to the criterion
concerning the sign of F0 defined above, we conclude
that there is no reason why to exclude fa from Eq. (8).
On the other hand, for fb, there is a large region where
F0 < 0, implying that this family can not be used to
evaluate |K(2)| in this region. Then, if we assume that
only fa contributes to this particular region and impose
continuity in the whole plane (T, q̄x), we find the result
shown in Fig. 1(f). In practice, to plot this graph, ex-
cept for the region where we know that fb should not
be included, we span the whole plane (T, q̄x), comparing
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the results of Figs. 1(a) and 1(c) and selecting the one
which optimizes continuity. Figure 1(f), in this sense,
is the better we can do by using Eq. (8). A close look
at Figs. 1(a), 1(c), 1(e), and 1(f), however, reveals that
family fb was excluded from the calculation even where
F0 is non-negative. It could be seem as an illegitimate
procedure, but, as discussed earlier in the present paper,
supported by the Stokes Phenomenon, we are allowed to
do this.

We now face the problem of the PSC. There is no
other solution to this issue unless to revisit and to im-
prove the approximations performed in Eq. (1). Two
ingredients are crucial to accomplish this task: Maslov’s
method [33–35] and uniform approximations [23, 36–40].
Generically, the first one consists in working with two
conjugate representations of the same semiclassical ob-
ject, so that if there is a singularity in a given representa-
tion one changes to other. Then, by transforming back to
the original representation including further corrections,
the singular point can be circumvented. The method has
the advantage of avoiding the extremely complicated cal-
culation originated by the direct implementation of third
order corrections in the path integral representation of
Eq. (1). Uniform approximations, in this case, are use-
ful to perform the integral involved in the last step of
the Maslov method. They enable us to map the compli-
cated integrand into a simpler one, but having a similar
structure of saddle points. Essentially, as in the asymp-
totic limit ~ → 0 saddle points concentrate useful infor-
mation about the integral, the mapping assures a good
accuracy. We recall that the combination of both meth-
ods were already used to deal with problems similar to
PSC’s, namely, to deal with the break-down of quadratic
approximations. It was used, for instance, to avoid the
turning point divergence in the WKBmethod [26, 34] and
also to treat caustics in the coordinate propagator [41].
In Ref. [41], in particular, Schomerus and Sieber derived
extensions of the Gutzwiller formula for the case of co-
alescent orbits. We point out that, while in Ref. [41]
the methods were applied to perform the trace and the
Fourier transform of the coordinate propagator (opera-
tions which transform the propagator into the uniform
density of states), our approximation is exclusively per-
formed in order to find a uniform formula for the propa-
gator itself.

Following these ideas, we studied a conjugate represen-
tation for the coherent states [42]. From it the Maslov
method can be applied so that a uniform approxima-
tion for K, valid for regions close and far from PSC’s,
can be easily obtained. This task was already performed
for both 1D [43] and 2D coherent states [44], with some
simple applications presented in Ref. [45]. The prescrip-
tion that we achieved to properly evaluate the propagator
around a PSC includes, firstly, finding the two contribut-
ing trajectories to K(2). Then, from their actions Sa and
Sb, we calculate

A = i
2~ (Sa + Sb) and B =

[

3i
4~ (Sb − Sa)

]2/3
, (13)

which can be directly used in the uniform formula [45]

K(un)(z′′∗, z′, T ) = i
√
π
[

c1f
′
j(B) + c2fj(B)

]

eA, (14)

where c1 = (hb − ha)/
√
B and c2 = ha + hb, with

ha,b =

√

∓
√
B/(detMvv)|a,b e

i
~
Ga,b . (15)

The function fj(ξ) is the well-known Airy’s function,

fj(ξ) =
1

2π

∫

Cj

exp

{

i

(

ξt+
t3

3

)}

dt, (16)

where the index j refers to three possible paths of inte-
gration Cj , related to three different Airy’s functions [40].
When used for the present application, the three pos-

sible solutions for the uniform formula (14) can be easily
organized as three continuous and distinct solutions in
the plane (T, q̄x), as shown in Figs. 2(a), 2(b) and 2(c).
Comparing them with the results of Fig. 1, we realize
that Fig. 2(a), Fig. 2(b), and Fig. 2(c) refer, respec-
tively, to the uniformization of Fig. 1(a), Fig. 1(b), and
Fig. 1(c). Since Fig. 2(a) agrees with Fig. 1(f) far from
the PSC, we elect it as the final semiclassical result. In
Fig. 2(d), we show the full quantum mechanical result,
and, in Fig. 2(e), the relative error ||K|−|K(un)||/|K| be-
tween Fig. 2(a) and Fig. 2(d). Notice that the adopted
approximation satisfactorily agrees with the exact result:
For almost all points, the error is less than 5%. At last,
for an additional comparison, in Fig. 2(f), we plot in the
same graph the two individual contributions for K(2),
the exact, and the uniform result of Fig. 1(a), just for
the line q̄x = 0.58. We emphasize that the choice of the
branch of Eq. (14) can also be seem as a manifestation
of the Stokes Phenomenon. Notice also that, once the
singularity has been removed, continuity is more evident
and the choice becomes easier.
In this article, we briefly reported a rich numerical

study on semiclassical approximations of the coherent-
state propagator. Analogously to the most famous semi-
classical approximation based on second order expansion,
namely, the WKB formula, K(2) also suffers the problem
of non-physical solutions and singularities in its prefac-
tor. The first problem can be handled by excluding spuri-
ous trajectories using continuity (physical) criteria. This
elimination, however, does not solve the problem of PSC
(equivalent to the turning point divergence in the WKB
method). Combining the Maslov method with a conju-
gate for the coherent-state representation, we developed
a uniform formula for K, which has shown to agree with
the full quantum mechanical calculation. Curiously, in
the uniform approach, spurious trajectories of K(2) be-
come crucial to calculate K(un). Concerning the decision
about which solution of K(un) should be chosen, it can
be done by imposing continuity and the fact that K(un)

should agree with K(2) in regions far from PSC’s. Fi-
nally, we emphasize that the numerical example studied
in the present paper figures among the worst scenarios to
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FIG. 2. Panels (a)-(c) show three continuous and distinct contour plots for the solutions of |K(un)| in the (T, q̄x) plane.
Panel (d) shows the contour plot of the exact |K|, and panel (e) the relative error between panels (a) and (d). In panel (f), we
present, just for q̄x = 0.58, the results of Fig. 2(a) (gray solid line), Fig. 2(d) (black solid line), Fig. 1(a) (dash-dotted line), and
Fig. 1(b) (dashed line); Its inset shows |P|−1 for fa (dash-dotted line) and fb (dashed line), for the same points. For panel (e),
the difference between two subsequent curves is 0.01. Axes are the same for all graphs, except for panel (f) where they are
explicitly shown.

evaluate semiclassical formulas, since we approach very
close to a caustic. In spite of the adverse conditions, the
systematic use of techniques concerned with both stan-
dard second order approximation and uniform approxi-
mation has shown to be quite satisfactory to deal with

this situation.
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