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Abstract.

In the Bargmann representation of quantum mechanics, physical states are mapped

into entire functions of a complex variable z
∗, whereas the creation and annihilation

operators â† and â play the role of multiplication and differentiation with respect to z
∗,

respectively. In this paper we propose an alternative representation of quantum states,

conjugate to the Bargmann representation, where the roles of â† and â are reversed,

much like the roles of the position and momentum operators in their respective

representations. We derive expressions for the inner product that maintain the usual

notion of distance between states in the Hilbert space. Applications to simple systems

and to the calculation of semiclassical propagators are presented.

1. Introduction

In quantum mechanics, the position and the momentum of a particle are represented

by operators q̂ and p̂ satisfying the canonical commutation relation [q̂, p̂] = ih̄. The

eigenstates of q̂, obeying q̂|q〉 = q|q〉, form a complete set and define the coordinate

representation, where state kets |ψ〉 are mapped into square-integrable wavefunctions

ψ(q) = 〈q|ψ〉 with q̂|ψ〉 → 〈q|q̂|ψ〉 = qψ(q) and p̂|ψ〉 → 〈q|p̂|ψ〉 = −ih̄∂ψ(q)/∂q.
Similarly, the eigenstates of p̂ define the momentum representation, where |ψ〉 → ψ̃(p) =

〈p|ψ〉 with p̂|ψ〉 → 〈p|p̂|ψ〉 = pψ̃(p) and q̂|ψ〉 → 〈p|q̂|ψ〉 = ih̄∂ψ̃(p)/∂p. The two

representations are said to be conjugate to each other and are related by the Fourier

transformation

ψ(q) =
∫

〈q|p〉ψ̃(p)dp = 1√
2πh̄

∫

ψ̃(p)eipq/h̄dp. (1)

The interplay between the position and the momentum representations is of great

importance in the quantum theory. Although the information contained in either

representation is the same, the clarity and simplicity of a calculation depend strongly

on which representation is chosen. Simple illustrations in one-dimension are the time
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independent Schrödinger equation for the square barrier potential, which is very simple

in the coordinate representation, and the linear potential V (q) = q, which can be

solved immediately in the momentum representation. This is particularly useful to

calculate WKB wavefunctions near turning points, where the coordinate representation

is singular.

More elaborate applications involve semiclassical approximations for time

dependent problems, such as the propagator K(qf , qi, T ) = 〈qf |e−iĤT/h̄|qi〉, which

depends on classical trajectories starting at qi and ending at qf after a time T .

The semiclassical approximation for K diverges at the so called focal points, where

∂pi/∂qf → ∞, and is inaccurate in a whole vicinity of these points [1]. In general,

a focal point in the position representation is not a simultaneous focal point in the

momentum representation and, as proposed by Maslov [2, 3], one can switch between

the two representations to pass by the focal point. In other words, the semiclassical

approximation for K(pf , qi, T ) = 〈pf |e−iĤT/h̄|qi〉 is well behaved when calculated at

the same trajectory where K(qf , qi, T ) is divergent, and can be Fourier transformed to

produce accurate results for the original propagator K(qf , qi, T ).

Besides the position and momentum representations, a different set of continuous

basis states can be defined with the help of coherent states, whose importance in physics

has been recognized since the early days of quantum mechanics [4, 5, 6, 7, 8, 9]. In the

special case of the harmonic oscillator, coherent states are closely associated with the

creation and annihilation operators

â =
1√
2

(

q̂

b
+ i

p̂

c

)

, â† =
1√
2

(

q̂

b
− i

p̂

c

)

, (2)

where b =
√

h̄/(mω) and c =
√
mh̄ω, with m and ω the mass and frequency of

the oscillator, respectively. The commutation relation [â, â†] = 1, together with

the eigenvalue equation â|z〉 = z|z〉, define an alternative representation of quantum

mechanics which was introduced by Fock and studied in detail by Bargmann [4], who

lent his name to the theory, Glauber [5] and others [6, 7, 8, 9]. In the Bargmann

representation, the state |ψ〉 is mapped into an entire function ψ(z∗) = 〈z|ψ〉 of the

complex variable

z∗ =
1√
2

(

q

b
− i

p

c

)

, (3)

where â†|ψ〉 → 〈z|â†|ψ〉 = z∗ψ(z∗) and â|ψ〉 → 〈z|â|ψ〉 = ∂ψ(z∗)/∂z∗. The

(unnormalized) Bargmann states |z〉 are given by

|z〉 = ez â
† |0〉, (4)

where |0〉 is the ground state of the harmonic oscillator. These states are related to the

(normalized) canonical coherent states |z〉〉 by |z〉〉 = e−|z|2/2|z〉. The real numbers q

and p are the average values of the position and momentum operators in the state |z〉〉.
Contrary to the position and the momentum representations, the Bargmann

representation lacks a dual counterpart. Indeed, since the operator â† does not have
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eigenstates, it is not possible to map |ψ〉 into ψ(z) such that â|ψ〉 is mapped into

zψ(z). It might be argued that, because it is a phase-space representation, where both

q and p participate simultaneously, a conjugate representation is simply not needed.

It was initially thought, for instance, that the phase-space propagator K(z∗f , zi, T ) =

〈zf |e−iĤT/h̄|zi〉 would be free of focal points [10, 11, 12, 13]. Focal points, however,

do exist in the coherent state propagator [14, 15, 16, 17] and in mixed representations

as well [18, 19, 20, 21, 22] and the application of the Maslov method would require a

conjugate representation for the Bargmann states.

The existence of phase space focal points motivated the definition of an application

that could play the role of a conjugate representation for the Bargmann states [23] and

that was successfully used in applications of the Maslov method [24, 25]. Its relation

to the Bargmann representation, however, is not as simple as the relation between the

position and momentum representations, but it does comply with the basic requirements

of a dual map. The purpose of this paper is to formalize this conjugate representation

and to study it in more detail.

The paper is organized as follows: in section 2 we review some of the main

ingredients of the Bargmann representation. In section 3 we define its conjugate

counterpart in terms of line integrals in the complex plane and study some of its

properties. In section 4 we present alternative formulas where the line integrals are

replaced by integrals over the entire complex plane and in section 5 we show a few

simple applications. Finally, in section 6, we summarize our results.

2. The Bargmann representation

In the Bargmann formalism, a state ket |ψ〉 is represented in phase space by its projection

onto a non-normalized coherent state

ψ(z∗) = 〈z|ψ〉 = 〈0|ez∗a|ψ〉 . (5)

The state of the system is completely determined by the entire function ψ(z∗). The

resolution of unit is expressed in terms of the integral

Î =
∫

d2z

π
e−|z|2 |z〉〈z| ≡

∫

dqdp

2πh̄
e−|z|2 |z〉〈z| ≡

∫

d2µ(z) |z〉〈z| , (6)

so that the inner product between |ψ〉 and |φ〉 reads

〈ψ|φ〉 =
∫

d2µ(z) ψ∗(z∗)φ(z∗) ≡ (ψ, φ), (7)

where the last equality also defines the inner product between the two corresponding

entire functions.

The Bargmann space F is composed of the entire functions ψ(z∗) such that

(ψ, ψ) <∞. The mapping between ψ(q) and ψ(z∗) can be constructed explicitly as

ψ(z∗) =
∫

dq〈z|q〉〈q|ψ〉 = π−1/4b−1/2
∫

dq e−
1

2
(z∗2+q2/b2)+

√
2z∗q/b ψ(q), (8)
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with its inverse given by

ψ(q) = π−1/4b−1/2
∫

dµ(z) e−
1

2
(z2+q2/b2)+

√
2zq/b ψ(z∗). (9)

If ψ and φ are expressed as a power series as

ψ(z∗) =
∞
∑

n=0

anz
∗n/

√
n! , φ(z∗) =

∞
∑

n=0

bnz
∗n/

√
n! (10)

the overlap reduces to

〈ψ|φ〉 =
∞
∑

n=0

a∗nbn. (11)

Therefore, the set of functions

φn(z
∗) = 〈z|n〉 = z∗n/

√
n! (12)

forms a complete orthonormal set in F , where |n〉 are the eigenstates of the underlying

harmonic oscillator, Eqs. (2)–(4).

In the Bargmann representation it is convenient to express observables in terms

creation and annihilation operators. The action of these operators on |ψ〉 yields

〈z|â†|ψ〉 = z∗ψ(z∗) , 〈z|â|ψ〉 = ∂

∂z∗
ψ(z∗) . (13)

Any observable Â(â†, â) is, therefore, written in the Bargmann representation as

ÂB = Â(z∗, ∂
∂z∗

). This identification is valid for any ordering of the operators since

the commutation relation [â, â†] = 1 is preserved, i. e.,
[

∂
∂z∗
, z∗

]

= 1. Thus, one can

recast the time-independent Schroedinger equation Ĥ|ψ〉 = E|ψ〉 as ĤBψ(z
∗) = Eψ(z∗).

For the simple harmonic oscillator ĤB = h̄ω(z∗ ∂
∂z∗

+ 1/2) and we get

h̄ω

(

z∗
∂

∂z∗
+

1

2

)

un(z
∗) = Enun(z

∗) , (14)

whose solutions are exactly the normalized functions φn(z
∗), defined by Eq. (12), with

eigenvalues En = h̄ω(n+ 1/2), n = 0, 1, 2, · · ·.
Before closing this section we derive Bargmann’s reproducing kernel from the

resolution of unit (6). Multiplying this equation on the right by |ψ〉 and on left by

〈w| we obtain

ψ(w∗) =
∫

d2µ(z) 〈w|z〉ψ(z∗) =
∫

d2µ(z) ew
∗zψ(z∗). (15)

The reproducing kernel K(w∗, z) = 〈w|z〉 = ew
∗z plays the role of the delta function

in the position and momentum representations and will be important to derive some

useful relations in the next sections.
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3. The Conjugate Application

3.1. Basic definitions

Let |ψ〉 be a state ket and ψ(z∗) = 〈z|ψ〉 its Bargmann representation. For each coherent

state |w〉 we define the application |ψ〉 −→ fψ(w) by

fψ(w) =
∫

γ

〈z|ψ〉
〈z|w〉 dz

∗ =
∫

γ
ψ(z∗) e−z

∗wdz∗ (16)

and its inverse by

ψ(z∗) =
1

2πi

∫

γ′
fψ(w)〈z|w〉 dw =

1

2πi

∫

γ′
fψ(w) e

z∗wdw. (17)

The integration paths γ and γ′ will be defined below.

Although the denominator in Eq. (16) might look unusual, it is really a direct

generalization of the transformation between the coordinate and the momentum

representations, which can be written as

ψ̃(p) =
1

2πh̄

∫ 〈q|ψ〉
〈q|p〉 dq and ψ(q) =

∫

〈q|p〉〈p|ψ〉dp.

However, while both ψ(q) and ψ̃(p) are matrix elements between the ket |ψ〉 and a bra,

fψ(w) is not itself a matrix element. Moreover, the application is linear in |ψ〉, since
fαψ+βφ(w) = αfψ + βfφ, (18)

but not in |w〉. For this reason the nomenclature conjugate application is preferred

instead of conjugate representation.

3.2. Action of operators

Before we specify the integration paths γ and γ′ we explore the action of operators on the

conjugate functions. Consider two states |ψ1〉 = â†|ψ〉 and |ψ2〉 = â|ψ〉, whose Bargmann

representations are given, respectively, by ψ1(z
∗) = z∗ψ(z∗) and ψ2(z

∗) = ∂ψ(z∗)
∂z∗

. The

corresponding conjugate functions are, according to (16),

fψ1
(w) =

∫

γ
z∗ψ(z∗)e−z

∗wdz∗ = − ∂

∂w
fψ(w) (19)

and

fψ2
(w) =

∫

γ

∂ψ(z∗)

∂z∗
e−z

∗wdz∗ = wfψ(w), (20)

where we have integrated by parts and assumed that ψ(z∗)e−z
∗w vanishes at the extremes

of γ (see comment after Eq.(32) in next subsection). Consequently, if |φ〉 = Â(â, â†)|ψ〉
and φ(z∗) = ÂB

(

∂
∂z∗
, z∗

)

ψ(z∗), then

fφ(w) = Â

(

w,− ∂

∂w

)

fψ(w) ≡ ÂCfψ(w) (21)

since the commutation relation [â, â†] = 1 is preserved in the form [w,−∂/∂w] = 1.
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The duality between the two representations is therefore expressed by the action of

â and â† on the corresponding functions ψ(z∗) and fψ(w):

â −−−−−→
Bargmann

∂
∂z∗

−−−−−→
Conjugate w

â† −−−−−→
Bargmann z∗ −−−−−→

Conjugate − ∂
∂w
.

(22)

In particular, the Schrödinger Equation in the space of functions fψ(w) becomes

ĤC

(

− ∂

∂w
,w

)

fψ(w) = Efψ(w). (23)

For the harmonic oscillator we obtain

h̄ω

(

− ∂

∂w
w +

1

2

)

fψ(w) = Efψ(w) (24)

and the eigenfunctions and eigenvalues can be immediately calculated as

fn(w) =

√
n!

wn+1
, En = h̄ω(n+ 1/2), (25)

where the choice of normalization is justified in the next subsection.

3.3. Integration paths

In order to define the paths γ and γ′ in Eqs. (16) and (17), we consider the expansion

of a general ket |ψ〉 in the harmonic oscillator basis {|n〉}, namely, |ψ〉 =
∑∞
n=0 an|n〉.

The Bargmann representation of |ψ〉 is

ψ(z∗) =
∞
∑

n=0

an〈z|n〉 =
∞
∑

n=0

anφn(z
∗) =

∞
∑

n=0

anz
∗n

√
n!

, (26)

where

an =
1√
n!

∫

ψ(z∗)zn d2µ(z). (27)

Inserting (26) in Eq. (16), we find

fψ(w) =
∞
∑

n=0

anfφn(w), (28)

where

fφn(w) =
∫

γ
φn(z

∗)e−z
∗wdz∗ =

1√
n!

∫

γ
z∗ne−z

∗wdz∗. (29)

We now demand that fφn(w) = fn(w), given by Eq. (25). This is achieved by

converting the line integral into a Laplace transform. Writing z and w in terms of

polar variables, z = rze
iθz and w = rwe

iθw , the exponent of the integrand becomes

−z∗w = −rzrwei(θw−θz). The path γ is fixed by choosing θz = θw and rz going from 0 to

∞. In fact, since the function being integrated is analytic, it suffices to take paths that

can be deformed into this one. Explicitly we obtain

fφn(w) =
e−i(n+1)θw

√
n!

∫ ∞

0
rnz e

−rzrwdrz =
w−(n+1)

√
n!

Γ(n+ 1) =

√
n!

wn+1
, (30)
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which leads to the Laurent series

fψ(w) =
∞
∑

n=0

an

√
n!

wn+1
. (31)

Provided the sum on the right side converges we can also write

an =
1√
n!

∫

fψ(w)w
n+1 d2µ(w). (32)

This choice of γ also guarantees the correctness of Eq.(20) for functions that can be

expressed as power series like (26), since ∂ψ/∂z∗ does not depend on a0.

Alternatively, using this integration path directly into Eq. (16) leads to

fψ(w) =
∫ ∞

0
ψ(rze

−iθw)e−rzrw−iθwdrz =
1

w

∫ ∞

0
ψ
(

x

w

)

e−xdx. (33)

Similarly, the inverse transform of fφn(w) can be written as

1

2πi

∫

γ′
fφn(w)e

wz∗dw =

√
n!

2πi

∫

γ′

ewz
∗

wn+1
dw, (34)

which can be performed by using Cauchy’s residue theorem, when γ′ is conveniently

chosen and the integral becomes a Mellin integral. Since the pole is located at the

origin, γ′ should be perpendicular to the straight line connecting the origin with z,

crossing the real axis on the positive (negative) side if Re(z∗) > 0 (Re(z∗) < 0). Then,

we get

1

2πi

∫

γ′
fφn(w)e

wz∗dw =
1√
n!

(

dnewz
∗

dwn

)
∣

∣

∣

∣

∣

w=0

=
z∗n√
n!

= φn(z
∗). (35)

Therefore, the general inverse formula can be written as

ψ(z∗) =
1

2πz∗

∫ ∞−iǫ

−∞−iǫ
fψ

(

iv

z∗

)

eivdv, (36)

where ǫ is a positive number.

Alternative expressions for the mappings between ψ(z∗) and fψ(w) that avoid the

line integrals will be given in section 4.

3.4. Scalar product

The scalar product between two kets |ψ〉 and |φ〉 can be obtained starting from

〈ψ|φ〉 =
∫

ψ∗(z∗)φ(z∗) d2µ(z) =
∑

n,m

a∗mbn

∫

φ∗
m(z

∗)φm(z
∗)d2µ(z), (37)

where |ψ〉 = ∑∞
n=0 an|n〉 and |φ〉 = ∑∞

n=0 bn|n〉. Using Eqs. (35) and (36) we obtain

〈ψ|φ〉 = 1

4π2

∞
∑

n,m=0

a∗mbn
√
m!n!Amn, (38)

where

Amn =
∫

[

z∗m
∫ ∞

−∞

eǫ+iy

(ǫ+ iy)m+1
dy

]∗ [

z∗n
∫ ∞

−∞

eǫ+iy

(ǫ+ iy)n+1
dy

]

d2µ(z). (39)
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The integration over d2µ(z) gives
∫

znz∗m d2µ(z) = m!δmn. (40)

In addition, the integral inside the first brackets of Eq. (39) can be evaluated by residues

resulting in 2π/m!. Thus,

Amn = 2πδmn
∫∞
−∞

eǫ+iy

(ǫ+iy)n+1dy

= 2πδmn
∫∞
0

[

eǫ+iy

(ǫ+iy)n+1 +
eǫ−iy

(ǫ−iy)n+1

]

dy
(41)

and Eq. (38) becomes

〈ψ|φ〉 = 1
2π

∑∞
n,m=0 a

∗
mbn

√
m!n!δmn

∫∞
0

[

eǫ+iy

(ǫ+iy)n+1 +
eǫ−iy

(ǫ−iy)n+1

]

dy. (42)

At last, we use the identity

δmne
ǫ±iy

(ǫ± iy)n+1
=

1

2π

∫ 2π

0

ei(m−n)θeǫ±iydθ

(ǫ± iy)
n+1

2 (ǫ± iy)
m+1

2

(43)

and change the variable of integration in Eq. (42) as y = r2 obtaining

〈ψ|φ〉 = 1

2π2

∫ ∞

0
rdr

∫ 2π

0
dθ Fǫ(r, θ), (44)

where

Fǫ(r, θ) = f ∗
ψ(w(+)e

−iπ/4)fφ(w(−)e
+iπ/4)e+i(r

2−iǫ)

+ f ∗
ψ(w(−)e

+iπ/4)fφ(w(+)e
−iπ/4)e−i(r

2+iǫ) (45)

and w(±) =
√
r2 ± iǫ eiθ. Finally, taking the limit ǫ → 0, w(+) = w(−) = reiθ and,

defining w1 = we−i
π
4 and w2 = wei

π
4 we obtain

〈ψ|φ〉 = 1
π2

∫

[

f ∗
ψ(w1)fφ(w2)e

i|w|2 + f ∗
ψ(w2)fφ(w1)e

−i|w|2
]

d2w. (46)

4. Alternative formal transformations

4.1. The coherent state

The Weyl displacement operator D̂ = ezâ
†

in the dual space becomes D̂C = e−z
∂
∂w .

As a consequence, since |z〉 = ezâ
† |0〉 = D̂|0〉 and the conjugate of the ground state is

f0(w) =
1
w
, we find

fz(w) = e−z
∂
∂w

(

1

w

)

=
1

w
+

z

w2
+
z2

w3
+ · · · = 1

w − z
(47)

for |z/w| < 1. This shows that D̂C also acts as a displacement operator in the dual

space. Although the series does not converge inside the circle |z/w| = 1, we analytically

extend it to fz(w) = 1/(w − z) to the whole complex plane, except for w = z. This

continuation is justified because the path of integration γ′ in the inverse transformation

(17) can always be chosen to lie outside the circle |z/w| = 1 and, therefore, the integral is

independent of fz(w) in this region. Note that the result (47) can also be obtained using

the basic definition (33). This time the convergence region is for w outside the circle of

radius |z|/2 centered on z/2, which is less restrictive than that obtained via displacement



A conjugate for the Bargmann representation 9

operator. Analytic continuation is then similar to that done for the Laplace transform

of the exponential function.

Equation (47) provides an important formal expression of fψ(w). Starting from the

expansion for |ψ〉 in coherent states

|ψ〉 =
∫

〈z|ψ〉|z〉 d2µ(z) (48)

and transforming both sides we obtain

fψ(w) =
∫

ψ(z∗)fz(w) d
2µ(z). (49)

The integral in equation (49) is over the whole phase-space, avoiding the cumbersome

line integrals of the original definition. However, this expression is only formal, since

going from (48) to (49) involves the ilegal interchange of the line integral coming from

the definition of fψ and the integral over the complex plane from (48). Nevertheless,

expanding |z〉 in (48) in the harmonic oscillator basis states and doing the integral term

by term we obtain the convergent expression

fψ(w) =
∞
∑

n=0

1

wn+1

∫

znψ(z∗) d2µ(z). (50)

This procedure is equivalent to treating fz(w) formally as the series given by (47) and

interchange the summation and integration.

Although the direct transformation (49) is only formal and essentially useless, it is

possible to write down the inverse transformation in the same footing which is valid for

all fψ(w). Using the formal expression (49) temporarily we write

ψ(z∗) =
∫

A(z∗, t)fψ(t) d
2µ(t) =

∫

A(z∗, t)ψ(w∗)fw(t) d
2µ(w) d2µ(t).(51)

Comparing with the reproducing kernel Eq.(15) we find that
∫

A(z∗, t)fw(t) d
2µ(t) = ez

∗w. (52)

Going back to the series representation for fw(t) and exchanging the summation and

integration we recast this equation as
∞
∑

n=0

wn
[

∫ A(z∗, t)

tn+1
d2µ(t)

]

= ez
∗w, (53)

which shows that
∫

A(z∗, t)

tn+1
d2µ(t) ≡ z∗n

n!
. (54)

Differentiating both sides n times with respect to z∗ gives one. Comparing again with

Eq.(15) we find that A(z∗, t) = t exp {z∗t} and

ψ(z∗) =
∫

w ez
∗wfψ(w) d

2µ(w). (55)

Contrary to (49), this equation is well defined for all fψ(w). This is an interesting

expression that allows the construction of matrix elements, such as propagators, from

usual phase space integration of their dual forms. We show in the appendix how to

perform the integral for the basic cases |ψ〉 = |n〉 and |ψ〉 = |z〉.
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4.2. Reproducing kernel

When Eq.(55) is substituted back into (49) we get

fψ(w) =
∫

w′ ez
∗w′

fψ(w
′)fz(w) d

2µ(w′) d2µ(z).

≡ ∫ KC(w,w
′)fψ(w

′) d2µ(w′).

(56)

Comparing with (15) we find

KC(w,w
′) =

∫

w′ ez
∗w′

fz(w) d
2µ(z) = w′fw′(w) =

w′

w − w′ . (57)

Once again these expressions are only formal and the operational reproducing equation

is

fψ(w) =
∞
∑

n=0

1

wn+1

∫

w′ n+1
fψ(w

′)d2µ(w′). (58)

4.3. Scalar product

An expression for the scalar product can be obtained from Eqs. (7) and (55):

(ψ, φ) =
∫

d2µ(z)ψ∗(z∗)φ(z∗)

=
∫

t∗w ezt
∗+z∗wf ∗

ψ(t)fφ(w)d
2µ(t) d2µ(w) d2µ(z).

(59)

Using (15) again we find
∫

ezt
∗+z∗w d2µ(z) = et

∗w (60)

and

(ψ, φ) =
∫

t∗w et
∗wf ∗

ψ(t)fφ(w)d
2µ(t) d2µ(w). (61)

We can check the correctness of this expression by expanding the exponential in

power series and rewriting this as

(ψ, φ) =
∑∞
n=0

[

∫ tn+1fψ(t)√
n!

d2µ(t)
]∗ [

∫ wn+1fφ(w)√
n!

d2µ(w)
]

=
∑∞
n=0 a

∗
nbn,

(62)

where we used (32) with an and bn as coefficients for ψ and φ respectively (10). A mixed

representation for the scalar product can also be obtained by combining Eqs. (61) and

(55):

(ψ, φ) =
∫

t∗ f ∗
ψ(t)φ(t

∗)d2µ(t). (63)

This expression might be useful, considering that for the eigenstates of the harmonic

oscillator t∗ f ∗
φn(t)φn(t

∗) = 1.
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5. Simple examples

5.1. The propagator of the harmonic oscillator

In the Bargmann representation the propagator of the harmonic oscillator is [23]

k(z∗, z0, t) ≡ 〈z|e−iĤt/h̄|z0〉 = ez0(t)z
∗−iωt/2, (64)

where z0(t) = z0e
−iωt. Its conjugate representation becomes

fk(w, z0, t) = e−iωt/2fz0(t)(w) =
e−iωt/2

w − z0(t)
. (65)

The diagonal conjugate representation becomes simply

fk(w,w, t) =
1

w

∞
∑

n=0

e−iω(n+1/2)t, (66)

which corresponds directly to its decomposition in eigenfunctions.

5.2. Position and momentum eigenstates

Although 〈z|q〉 does not belong to the Bargmann space F of square integrable functions,

we can readily write it down as

〈z|q〉 =
∞
∑

n=0

〈z|n〉〈n|q〉 =
∞
∑

n=0

z∗n√
n!

φn(q) (67)

where

φn(q) =
π−1/4b−1/2

2n/2
√
n!

e−q
2/2b2Hn(q/b), (68)

b =
√

h̄/mω and Hn are the Hermite polynomials. When (68) is placed into (67) the

sum can be performed an results in the well known expression

〈z|q〉 = π−1/4b−1/2 exp {− q2

2b2
− z∗2

2
+

√
2z∗q

b
}. (69)

The expression for |q〉 in the conjugate representation can be obtained directly from

Eqs. (68) and (67) and results in

fq(w) = π−1/4b−1/2e−q
2/2b2

∞
∑

n=0

1

wn+1
2−n/2 Hn(q/b). (70)

Alternatively, using the integral form given by Eq. (36) we find, for Re(w2) > 0,

fq(w) =
π1/4b−1/2

√
2

eq
2/2b2−

√
2wq/b+w2/2F (w/

√
2− q/b), (71)

where

F (u) =
u√
u2

[

1− Erf

(

u2√
u2

)]

(72)

and Erf is the error function. We have used the notation
√
u2 = r exp [i arctan (2θ)/2]

for u = r exp (iθ), which is simply |u| if u is real. It can be shown, using an integral

representation for the Hermite polynomials, that the sum in Eq. (70) above can also be

cast in this form for Re(w2) > 0. Similar expressions for fp(w) can be obtained from

fq(w) by replacing q by p and b by c =
√
mh̄ω.
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5.3. Calculation of matrix elements

Consider the matrix elements

〈z|X̂|z′〉 = 〈z|
[

b√
2

(

â+ â†
)

]

|z′〉 (73)

and

〈z|P̂ |z′〉 = 〈z|
[

c

i
√
2

(

â− â†
)

]

|z′〉. (74)

The transformed functions become

fX̂|z′〉(w) =
b√
2

(

w − ∂

∂w

)

fz′(w) (75)

and

fP̂ |z′〉(w) =
c

i
√
2

(

w +
∂

∂w

)

, fz′(w) (76)

where fz′(w) = 1/(w − z′).

5.4. Semiclassical limit

In the semiclassical limit, the propagator k(z∗f , zi, T ) = 〈zf |e−iĤT/h̄|zi〉 can be written

in terms of complex classical trajectories satisfying Hamilton’s equations and certain

special boundary conditions. Because the trajectories involved are complex, z(t) and

z∗(t) are independent classical variables and it is convenient to rename them as u(t) and

v(t) respectively. The boundary conditions satisfied by the trajectories contributing

to the semiclassical propagator are then given by u(0) = zi, v(T ) = z∗f . Using the

Weyl symbol H of the Hamiltonian operator Ĥ to govern the classical dynamics, the

semiclassical approximation for k reads [26, 27, 25]

ksc(z
∗
f , zi, T ) =

∑

traj.

√

1

Mvv
exp

{

i

h̄
S
}

(77)

where S is the action and Mvv is an element of the tangent matrix, that propagates

small displacements from the trajectory, defined by
(

δu(T )

δv(T )

)

=

(

Muu Muv

Mvu Mvv

)(

δu(0)

δv(0)

)

. (78)

The action satisfies the relations

∂S

∂z∗f
= −ih̄u(T ), ∂S

∂zi
= −ih̄v(0), ∂S

∂t
= −H(u(T ), z∗f , t) . (79)

The conjugate representation of ksc is given, for each contributing trajectory, by

k̃sc(w, zi, T ) =
∫

C̃ ksc(z
∗
f , zi, T )e

−z∗
f
wdz∗f

=
∫

C̃

√

1
Mvv

exp
{

i
h̄
(S + ih̄z∗fw)

}

dz∗f .

(80)
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When the integral is performed by the saddle point approximation, the saddle point

condition is given by

∂S

∂z∗f
= −ih̄w (81)

and the exponent of the transformed expression becomes

S̃(w, zi, T ) = S(zf , zi, T ) + ih̄wz∗f , (82)

where z∗f is obtained as a function of zi, w and T from (81). Equations (81) and (82)

define a Laplace transformation and comparison with (79) reveals that the trajectory

contributing to k̃sc satisfies u(0) = zi and u(T ) = w. When the exponent is expanded to

second order around the saddle point and the resulting quadratic integral is performed,

the conjugate propagator becomes [25]

k̃sc(w, zi, T ) =
∑

traj.

√

1

Muv

exp
{

i

h̄
S̃(w, zi, T )

}

. (83)

The whole conjugation process becomes totally analogous to the conjugation between

position and momentum representations. We refer to Ref.[25] for the details and for

applications related to focal points and the Maslov method.

6. Summary and Discussion

The conjugate representation introduced in [23] and studied here in more detail is

not standard. The reason for this unconventional approach is that, contrary to the

annihilation operator â, the creation operator â† does not have eigenstates. However,

we have shown that it is still possible to map Bargmann’s entire functions ψ(z∗) = 〈z|ψ〉
into a conjugate set of singular functions fψ(w) where the roles of â and â† are reversed.

The map takes the basis functions φn = z∗n/
√
n! into fn =

√
n!/wn+1 and a general

entire function ψ(z∗) =
∑

n anz
∗n/

√
n! into fψ(w) =

∑

n an
√
n!/wn+1.

The conjugate mapping is originally defined by means of a contour integration over

a curve γ on the z∗ complex plane. The curve is chosen so that φn(z
∗) is mapped

into fn(w). However, when applied to a coherent state |z0〉, the corresponding integral

converges to 1/(w−z0) only if |w/z0| > 1 and the conjugate fz0(w) has to be analytically

continued to the interior of this circle. This continuation has no consequences for the

inversion formula, since the integration curve γ′ can be chosen to lie outside this region.

We have shown that other formal transformation formulas can be derived which

avoid the need of contour integrations, replacing them by integrals over the whole

complex plane. These alternative representations, however, are very sensitive to the

limited convergence of the line integral defining fz(w), since they make direct use of

this formula. The direct transformation turns out to be only formal, but the inverse

transformation formula (49) is well defined and operational.
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Appendix A. The phase space inversion formula

In this appendix we show how the phase space inversion formula Eq. (55) works for the

simple cases where |ψ〉 = |n〉 and |ψ〉 = |z0〉. The equation is

ψ(z∗) =
∫

w ez
∗wfψ(w) d

2µ(w). (A.1)

For |ψ〉 = |n〉, fψ(w) =
√
n!/wn+1 and

ψ(z∗) =
√
n!
∫

1

wn
ez

∗w d2µ(w). (A.2)

Differentiating with respect to z∗ we get

dnψ

dz∗n
=

√
n!
∫

ez
∗w d2µ(w) =

√
n! (A.3)

and, therefore, ψ(z∗) = z∗n/
√
n!, which is the correct result.

For |ψ〉 = |z0〉 we have fψ(w) = 1/(w − z0) and

ψ(z∗) =
∫

w

w − z0
ez

∗w d2µ(w) =
∫
(

1 +
z0

w − z0

)

ez
∗w d2µ(w)

= 1 + z0e
z∗z0

∫

ez
∗(w−z0)

w − z0
d2µ(w) ≡ 1 + z0e

z∗z0J.

(A.4)

Since J is an analytic function of z∗,

dJ

dz∗
=
∫

ez
∗(w−z0) d2µ(w) = e−z

∗z0. (A.5)

To integrate this equation back we must be careful with the integration constant. For

z0 = 0, dJ/dz∗ = 1 and J = z∗, which is the correct result for the ground state |0〉. The
direct integration of (A.5), on the other hand, gives J = −e−z∗z0/z0, which does not

satisfy the proper condition at z0 = 0. In order to get the correct integration constant

we write

dJ

dz∗
=

∞
∑

n=0

(−1)nzn0 z
∗n

n!
(A.6)

and

J=
∞
∑

n=0

(−1)nzn0 z
∗n+1

(n+ 1)!
= − 1

z0

∞
∑

n=1

(−zn0 z∗)n
n!

= − 1

z0

(

e−z
∗z0 − 1

)

. (A.7)

Substituting back into (A.4) we obtain the correct result ψ(z∗) = ez
∗z0 .
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