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A Uniform Approximation for the Coherent State Propagator using a Conjugate

Application of the Bargmann Representation
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We propose a conjugate application of the Bargmann representation of quantum mechanics. Ap-
plying the Maslov method to the semiclassical connection formula between the two representations,
we derive a uniform semiclassical approximation for the coherent state propagator which is finite at
phase space caustics.

PACS numbers: 03.65.Sq, 31.15.Gy

Semiclassical approximations have been widely used in
many areas of physics. They are fundamental to the con-
ceptual understanding of the quantum-classical connec-
tion and are also very important in practical situations
where quantum calculation are difficult, as in systems
with many of degrees of freedom or with complicated po-
tential functions. However, semiclassical formulae are of-
ten not globally valid, i.e., they are not appropriate to de-
scribe the corresponding quantum function in all regions
of the space of parameters. The WKB formula for the
eigenfunctions of a particle in a one-dimensional poten-
tial well provides a simple example [1]: on the classically
allowed side of the well the wave-function is oscillatory,
whereas on the classically forbidden side it is given by a
single decreasing exponential. At the boundary between
the two regions, the turning point, the WKB formula
becomes singular. The formula actually fails in a whole
neighborhood of the singularity, whose size goes to zero
as h̄ goes to zero. For non-stationary wavefunctions the
singularities occur at focal points or caustics. After a fo-
cal point, but sufficiently away from it, the semiclassical
formulae for wave-functions or propagators still provide
good approximations, provided the proper Morse phases
are added [2].

This general problem of semiclassical expressions,
which leads to divergences and discontinuities in the
semiclassical results, can usually be eliminated by prop-
erly connecting the semiclassical expressions on the dif-
ferent regions of validity and eliminating spurious con-
tributions. The most direct way to do that is to solve
the Schrödinger equation in the vicinity of the singular-
ity and extend the solution towards the two regions. For
the WKB problem this amounts to linearize the potential
about the turning point, leading to the well known solu-
tion involving the Airy function [1]. For non-stationary
wavefunctions, however, this approach is not usually pos-
sible and the Maslov method has to be used [2, 3, 4]. It
consists basically in changing to a dual representation,
where the singularity does not exist. For a singularity
in coordinates, one uses the momentum representation
and vice-versa. The trick is that, when transforming
back to the original representation, one should go be-
yond the quadratic approximation, otherwise the singu-
larity re-appears. Usually, a stationary phase approxi-
mation with the exponent expanded up to cubic terms

is enough, giving rise once again to corrections involving
Airy functions.
In this Letter, we study the singularities of the semi-

classical propagator in the coherent state representa-
tion. These singularities, called Phase Space Caustics
(PSC), have been first identified in [5] and later studied
in [6, 7, 8]. All these previous works were concerned with
ways to identify the singularities and prune the branches
of spurious contributions arising from them. Here we
tackle the problem of how to improve the semiclassical
formula in order to avoid its divergence at the caustics.
This is a very peculiar situation, since the phase space
representation provided by the coherent states makes use
of both coordinate and momentum, leaving no room for
a natural dual representation. In this paper we define an
application that works as the canonical conjugate of the
Bargmann representation [9] and we use it to derive a uni-
form semiclassical formula for the coherent state propa-
gator valid in the vicinity of the phase space caustics. For
the sake of clarity, we restrict ourselves to systems with
one degree of freedom. Results for multidimensional sys-
tems, which can be treated along the same lines, and de-
tailed numerical applications will be published elsewhere.
The non-normalized coherent state |z0〉 is defined as

|z0〉 = ez0â
† |0〉, (1)

where

â† =
1√
2

(

q̂

b
− i

p̂

c

)

, z0 =
1√
2

(q0
b

+ i
p0
c

)

. (2)

Here |0〉 is the ground state of a harmonic oscillator of
frequency ω = h̄/mb2, â† is the creation operator and q0,
p0 are the mean values of the position q̂ and momentum
p̂ operators, respectively. The widths in position b and
momentum c satisfy bc = h̄ and z0 is complex. The semi-
classical approximation for the coherent state propagator

K(z∗f , z0, T ) ≡ 〈zf |e−iĤT/h̄|z0〉 is given by [10, 11, 12]

K
(

z∗f , z0, T
)

≈
∑

traj.

√

1

|Mvv|
exp

{

i

h̄
F

}

, (3)

where Mvv and F depend on (generally complex) classical
trajectories. These trajectories are best represented in
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terms of the variables u and v, instead of the canonical
variables q and p, defined by

u =
1√
2

(q

b
+ i

p

c

)

and v =
1√
2

(q

b
− i

p

c

)

. (4)

The sum in Eq. (3) runs over all trajectories governed

by the complex Hamiltonian H̃(u, v) ≡ 〈v|Ĥ |u〉 and sat-
isfying the boundary conditions u(0) ≡ u′ = z0 and
v(T ) ≡ v′′ = z∗f . Notice that q and p are complex vari-
ables, while the propagator labels, q0, p0 for the initial
state and qf , pf for the final one, are real. In Eq. (3), F
is given by

F (v′′, u′, T ) = S(v′′, u′, T ) + G(v′′, u′, T )− h̄

2
σ, (5)

where S, the complex action of the trajectory, and G are
given by

S(v′′, u′

, T ) =

∫

T

0

[

ih̄

2
(u̇ v − u v̇)− H̃

]

dt−
ih̄

2

[

u
′′

v
′′ + u

′

v
′
]

,

G(v′′, u′

, T ) =
1

2

∫

T

0

∂2H̃

∂u ∂v
dt .

Finally Mvv, and its phase σ, is an element of the tangent
matrix defined by

(

δu′′

δv′′

)

=

(

Muu Muv

Mvu Mvv

)(

δu′

δv′

)

, (6)

where δu and δv are small displacements around the com-
plex trajectory. We use a single (double) prime to indi-
cate initial time t = 0 (final time t = T ). The elements
of the tangent matrix can also be written in terms of sec-
ond derivatives of the action (see Ref. [12]). Note that
Eq.(5) differs from the formula given in [12] because we
are using non-normalized coherent states.
Phase space caustics occur when Mvv = 0, causing the

semiclassical propagator to diverge. Close to these points
the semiclassical formula provides only a poor approxi-
mation to the quantum propagator. For a discussion of
the mechanisms that lead to caustics in systems with one
degree of freedom see [6, 13, 14].
Caustics in the semiclassical propagator in a given rep-

resentation can usually be circumvented by applying the
Maslov method. This requires the calculation of the
semiclassical propagator in the respective conjugate rep-
resentation, followed by the transformation back to the
original one, with this last step performed with an ap-
proximation better than quadratic. For the case of co-
herent states, although there is no natural dual represen-
tation to be used with K(v′′, u′, T ), the complex action
S(v′′, u′, T ) satisfies the relations

u(T ) =
i

h̄

∂S
∂v′′

and v(0) =
i

h̄

∂S
∂u′

, (7)

which suggests a Legendre transformation S → S̃, by
the change of variables v′′ → (i/h̄)(∂S/∂v′′). The trans-

formed function S̃ depends on u′ and u′′, instead of u′

and v′′,

S̃(u′′, u′, T ) = S(v′′, u′, T ) + ih̄u′′v′′ , (8)

and satisfies the relations

v′′ = − i

h̄

∂S̃
∂u′′

and v′ =
i

h̄

∂S̃
∂u′

. (9)

These properties, on the other hand, suggest the follow-
ing definition for the dual representation of the semiclas-
sical propagator:

K̃(u′′, u′, T ) =
1√
2πi

∫

C

K(v′′, u′, T )e−u′′v′′

dv′′ (10)

where the path C will be specified below.
In the semiclassical limit this integral can be solved by

the steepest descent method [15] and an explicit expres-

sion for K̃ can be obtained. Inserting Eq.(3) into (10) we
find the saddle point condition

∂

∂v′′
[S + ih̄u′′v′′] = 0 or u′′ =

i

h̄

∂S
∂v′′

, (11)

where we have considered that G varies slowly in com-
parison with S (see Ref. [12]). Eq.(11) says that the
stationary trajectory satisfies u(0) = u′ and u(T ) = u′′,
i.e., the saddle point value v′′c of the integration variable
is equal to v(T ) of a trajectory satisfying these bound-
ary conditions. This imposes that the integration path
C must coincide with (or be deformable into) a steepest
descent path through v′′c . Expanding the exponent up to
second order around this trajectory and performing the
Gaussian integral we obtain

K̃(u′′, u′, T )=

√

i

|Muv|
e

i
h̄
S̃(u′′,u′,T )+ i

h̄
G̃(u′′,u′,T )− i

2
σ̃.(12)

We emphasize that K̃ depends on classical trajectories
satisfying u′ = u(0) and u′′ = u(T ). Muv is given by Eq.

(6), σ̃ is its phase, G̃(u′′, u′, T ) is the function G calculated

at the new trajectory, and S̃(u′′, u′, T ) is given by Eq.

(8). The PSC affecting K̃ correspond to trajectories for
which Muv = 0, which generally do not coincide with the
PSC of K.
The inverse transformation of Eq.(10) is given by

K(v′′, u′, T ) =
1√
2πi

∫

C̃

K̃(u′′, u′, T )eu
′′v′′

du′′ . (13)

Replacing Eq.(12) into (13) and doing the integral again
by the steepest descent approximation up to second order
gives back the original propagator of Eq.(3).
The pairs of equations (3)-(12) and (10)-(13) look very

much like the corresponding transformation for the prop-
agators in coordinates and momenta, K(xf , x0, T ) and
K(pf , x0, T ). In that case the classical trajectory goes
from x0 to xf in one case and from x0 to pf in the
other. However, although the coherent states define
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a true quantum mechanical representation [9], and the
propagator K(z∗f , z0, T ) corresponds to the matrix el-

ement 〈zf |e−iĤT/h̄|z0〉, there is no representation such

that K̃(zf , z0, T ) also corresponds to a similar matrix el-

ement. K̃ would involve two kets, |z0〉 and |zf 〉 instead
of a ket |z0〉 and a bra 〈zf |.
Therefore, since K̃ is not a matrix element of the evolu-

tion operator we must formalize its quantum mechanical
definition so that the previous transformations make pre-
cise sense. This is done as follows: given a ket |f〉 and
its Bargmann representation f(z∗) = 〈z|f〉 [9], for each
coherent state ket |w〉 we define the application

f̃(w) =
1√
2πi

∫

γ

〈z|f〉
〈z|w〉dz

∗ =
1√
2πi

∫

γ

f(z∗) e−z∗wdz∗.

(14)
The path γ must be chosen in such a manner that the
integral becomes a Laplace transform. This definition is
suggestive of the need to, so to speak, “cancel the bra
〈z| and replace it by a ket |w〉”. At the same time it
provides just the right Legendre transform we need in the
semiclassical limit when |f〉 = e−iHT/h̄|z0〉. The inverse
transformation is defined as

f(z∗) =
1√
2πi

∫

γ′

f̃(w)〈z|w〉dw =
1√
2πi

∫

γ′

f̃(w) ez
∗wdw

(15)
with γ′ chosen so that the integral is a Mellin transform.
To illustrate the transformation we apply it to the

harmonic oscillator. Let |f〉 be an eigenstate |m〉 of
the Hamiltonian operator. Then 〈z|m〉 ≡ φm(z∗) =

(z∗)m/
√
m! and

φ̃m(w) =
1√

2πim!

∫

γ

(z∗)me−z∗wdz∗. (16)

Writing w = |w|eiθ and z∗ = re−iα, the path γ is defined
by α = θ with r varying from 0 to ∞. This produces

φ̃m(w) =
1√
2πi

√
m!

wm+1
. (17)

The inverse transformation is given by

φ̆m(z∗) =

√
m!

2πi

∫

γ′

ez
∗w

wm+1
dw. (18)

Writing z = |z|eiφ and choosing γ′ so that w = (−α +
it)eiφ, with α > 0 fixed and t varying from −∞ to +∞,
we can solve the integral by the method of residues and

we find exactly φ̆m(z∗) = φm(z∗). For the propagator we
set |f〉 = e−iHT/h̄|z0〉 and obtain

K(z∗f , z0, T ) ≡ 〈zf |e−iĤT/h̄|z0〉 = ez0z
∗
fe

−iωT −iωT/2 (19)

and

K̃(w, z0, T ) =
1√
2πi

e−iωT/2

w − z0e−iωT
. (20)

Equations (14) and (15) show that the semiclassi-

cal propagator K̃ given by Eq.(12) is the semiclassical
approximation of a true quantum mechanical function,
namely Eq.(14) with f(z∗) = K(z∗, z0, T ). This func-
tion, although not a matrix element in a mixed repre-
sentation like K(pf , x0, T ) = 〈pf |e−iHT/h̄|x0〉, is well de-
fined provided the integral over γ converges. The appli-
cation defined by Eqs.(14) and (15) can be thought of as
conjugate to the Bargmann representation, and they pro-
vide the tools to the application of the Maslov method
to the coherent state propagator.
The connection between the propagator, Eq.(3), and

its conjugate function, Eq.(12), via steepest descent ap-
proximation with quadratic expansion of the exponent
works only in the regions where both Muv and Mvv are
non-zero. Close to caustics, where two stationary trajec-
tories coalesce and Mvv = 0, K̃ is still well defined and
K can be obtained by doing the inverse transform (13)
using a uniform approximation [16]. The basic idea is to
map the function in the exponent of the integrand into
an auxiliary cubic function of a new variableX . The new
function is chosen in such a way that its stationary points
coincide with those of the original function. Inserting Eq.
(12) into Eq. (13) we define the new integration variable
X = X(u′′) by

1

h̄
[S̃ + R̃]− iu′′v′′ ≡ A−BX +X3/3 (21)

where R̃ = G̃ + (i ln |Muv| − σ̃)h̄/2 contains the slowly
varying terms and A and B are functions of u′, v′′ and
T . Differentiating both sides with respect to X and dis-
carding the variation of R̃ yields
[

1

h̄

∂S̃
∂u′′

− iv′′

]

∂u′′

∂X
= i[v(T )− v′′]

∂u′′

∂X
= −B +X2.(22)

The stationary condition v(T ) = v′′ has generally two
solutions, u′′

+ and u′′
−, in the vicinity of a caustic. These

two stationary points, that coalesce at the caustic, are
mapped into X± = ±B1/2, while the caustic itself cor-
responds to X = 0. Substituting X = X± in (21) and
solving for A and B we find

A =
1

2h̄
(S+ + R̃+ + S− + R̃−) ,

B =

[

− 3

4h̄
(S+ + R̃+ − S− − R̃−)

]2/3

(23)

where S± is the action S = S̃ − ih̄u′′v′′ calculated at the
stationary trajectories defined by u′′

±.
The change of variables from u′′ to X also produces a

Jacobian f(X) ≡ ∂u′′/∂X . Since the X intervals that
contribute significantly to integral are those close to the
stationary points, we need to specify the Jacobian only
in these regions. Writing f(X) = C + G(X − B1/2) +
H(X +B1/2) and defining f± = f(X±) we find

f(X) = (f+ + f−)/2 +X(f+ − f−)/2B
1/2 . (24)
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FIG. 1: Square modulus of diagonal propagator for fixed z.
The lines correspond to the exact result (full), bare semiclas-
sical (dotted) and uniform (dashed).

Differentiating (22) with respect to X once again and
calculating at X± we obtain

f± =

(

±2M±
uvB

1/2

iM±
vv

)1/2

. (25)

Putting everything together we find the following uni-
form approximation for the propagator

K(u′, v′′, T ) =
1√
2π

∫

f(X) ei(A−BX+X3/3)dX . (26)

Far from the caustic, where the contribution of each
stationary trajectory can be computed separately, f(X)
reduces to f± and the integral can be written in terms
of an Airy function. In this case the Airy function can

be evaluated by the method of steepest descent, with the
integration path chosen according to the phase of its ar-
gument z = −B. Therefore the argument of z automat-
ically indicates whether the two stationary points of the
exponent contribute to the propagator or if only one of
them do. Expanding the exponent to second order about
the contributing points (X+ or X− or both, depending
on the arg(z)), and doing the resulting Gaussian integral
recovers the quadratic approximation Eq.(3). As an il-

lustration we consider the Hamiltonian Ĥ = (a†a+1/2)2.
Fig.1 shows the square modulus of the diagonal propa-

gator 〈z|e−iĤT |z〉 (b = c = h̄ = 1) as a function of T

for z = 1/(2
√
2). The dotted line displays the bare semi-

classical result, showing a large increase for T >∼ 2.0, due
to a nearby caustic. The exact result is the full line and
the uniform approximation is shown by the dashed line,
which is indeed uniformly good at all times. Detailed
numerical applications will be published elsewhere.

Eq.(26) and the definition of the conjugate application
and its inverse, Eqs.(14) and (15), constitute the main
results of this paper. Although the idea of a conjugate
application to the Bargmann representation is used here
just as a tool to derive the above uniform approximation,
it may be useful in other situations. For instance, a tran-
sitional approximation, valid only close to the caustics,
can also be derived. In addition, the Fourier frequencies
of the transformed propagator are the eigenvalues of the
Hamiltonian, and it might be simpler to extract those
eigenvalues from the transformed propagator than from
the Bargmann propagator. This is certainly the case for
the Harmonic oscillator, since the time dependence of
K̃(w,w, T ), see Eq.(20), is trivial.
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